VALUTAZIONE DELL'ESPOSIZIONE PROFESSIONALE DOVUTA AI GRADIENTI DI CAMPO IN RISONANZA MAGNETICA E AL MOVIMENTO NEL CAMPO MAGNETICO STATICO NON OMogeneo MEDIANTE IL METODO DEL PICCO PONDERATO

Contessa GM¹, Andreuccetti D², Falsaperla R¹, Lodato R³, Pinto R³, Zoppetti N² e Rossi P⁴

¹INAIL, via di Fontana Candida 1, 00040 Monte Porzio Catone (Roma)
²IFAC-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze)
³ENEA-Centro di Ricerche Casaccia, via Anguillarese 301, 00123 Roma
⁴Ministero della Salute (già INAIL vedi sopra)

E-mail: g.contessa@inail.it

RIASSUNTO
In questo studio viene proposta ed applicata una metodica di misura per la valutazione dell'esposizione occupazionale in risonanza magnetica dovuta ai campi di gradiente e al movimento nel campo magnetico statico.

Lo studio è stato condotto presso tre strutture sanitarie nell’area romana, due delle quali dotate di scanner a corpo intero da 1.5 T e una con scanner da 3 T per la sola testa. L'esposizione ai campi di gradiente è stata valutata nelle posizioni all'interno della sala magnete in cui gli operatori possono stazionare durante particolari procedure mediche (come ad esempio alcuni esami cardiaci su pazienti anestetizzati). Le sequenze di risonanza magnetica sono state scelte per ottenere una rappresentazione dei peggiori scenari di esposizione possibili. Gli effetti indotti dal movimento nel campo statico sono stati valutati considerando i reali movimenti di operatori (volontari) durante l'attività di lavoro e misurando con una sonda fissata a stretto contatto con la testa il campo magnetico variabile nel tempo da essi percepito.

L'analisi dei risultati si è basata sulle linee guida pubblicate dall'ICNIRP nel 1998 e nel 2010, applicando il metodo del picco ponderato con un approccio originale, esteso anche per verificare la conformità nella gamma di frequenze 0 - 1 Hz.

L'esposizione ai campi di gradiente degli scanner a 1.5 T è risultata in quasi tutti i casi non conforme con i livelli di riferimento ICNIRP del 1998 per le esposizioni occupazionali, essendo al tempo stesso sempre compatibile con quelli del 2010. Gli effetti indotti dal movimento sono risultati non conformi solo nel caso in cui l'operatore muove la testa all'interno del bore.

L'esposizione dovuta ai campi di gradiente dello scanner a 3 T è risultata meno significativa di quella imputabile agli scanner a 1.5 T e compatibile con quasi tutti gli standard di riferimento. Questo si ritiene sia conseguenza delle piccole dimensioni dell’apparato.

INTRODUZIONE
Viene presentata una metodica originale per la valutazione dell'esposizione ai campi elettromagnetici del personale sanitario operante nei siti di risonanza magnetica (RM). La metodica si basa su un approccio innovativo per la valutazione radioprotezionistica di segnali con forma d’onda complessa e riguarda sia i campi magnetici di gradiente (CMG) a bassa frequenza, sia il movimento nel campo magnetico statico (CMS) del magnete principale dello scanner di RM, entrambe situazioni per le quali non sono ancora disponibili delle procedure standardizzate. I risultati sono stati elaborati alla luce sia delle linee guida pubblicate dall’ICNIRP (International Commission on Non-Ionizing Radiation Protection) nel 1998 [1], che sono alla base della Direttiva Europea 2004/40/CE sulla protezione dei lavoratori dall'esposizione ai campi elettromagnetici [2], sia delle nuove linee guida ICNIRP del 2010 [3].

L’esposizione occupazionale ai campi elettromagnetici nelle strutture di RM rappresenta uno degli

Un primo studio sull’argomento, finanziato dalla Commissione Europea nel 2008, ha indicato che il 90% delle procedure esaminate sono conformi alle disposizioni della direttiva 2004/40; restano fuori solo situazioni molto particolari, come la RM interventistica e i casi di movimenti molto rapidi in posizioni prossime allo scanner. Recentì studi di letteratura riportano altresì che le esposizioni indotte dai movimenti nel CMS possono essere al di sopra sia dei livelli di riferimento ICNIRP del 1998 [4], sia delle soglie indicate dall’IEEE (Institute of Electrical and Electronics Engineers) [5, 6] nell’intervallo di frequenza 0-7 Hz. Inoltre, in posizioni vicine al magnetè, i valori misurati dei campi di gradiente possono essere superiori ai valori di azione della Direttiva (vale a dire, ai livelli di riferimento ICNIRP-1998).

MATERIALI E METODI

La metodica presentata è stata messa a punto in tre strutture sanitarie dell’area romana: l’Ospedale San Giovanni Calibita Fatebenefratelli (H1 di seguito), in cui è installato uno scanner RM Philips Achieva Nova da 1.5 T a corpo intero, utilizzato per gli esami clinici di routine; la Fondazione Santa Lucia (H2), dove è presente uno scanner Siemens Magnetom Allegra da 3 T, usato principalmente per la ricerca sulla funzionalità del cervello; l’Ospedale Pediatrico Bambino Gesù di Palidoro (H3), dotato di uno scanner Philips Achieva da 1.5 T a corpo intero. Quest’ultimo sito si è rivelato particolarmente interessante per quanto riguarda l’esposizione degli operatori sanitari, in quanto per alcuni esami cardiaci su bambini è richiesta la presenza continua di un anestesista accanto al paziente. Questa sembra essere la sola circostanza in cui attualmente, in Italia, il personale sanitario resta all’interno della sala magnetè durante un esame.

Nelle tre strutture sono state effettuate misure dei CMG, mentre le esposizioni dovute al movimento nel CMS sono state prese in esame solo per H3.

<table>
<thead>
<tr>
<th>Struttura e scanner</th>
<th>Codice</th>
<th>Sequenza RM</th>
<th>Punto</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ospedale San Giovanni Calibita Fatebenefratelli - Roma</td>
<td>H1S1</td>
<td>EPI Axial</td>
<td>TP</td>
<td>Serie di 21 fette di 0.5 mm</td>
</tr>
<tr>
<td>Scanner a corpo intero</td>
<td>H1S2</td>
<td>EPI Axial</td>
<td>TP</td>
<td>Singola fetta di 0.5 mm</td>
</tr>
<tr>
<td>Philips Achieva Nova 1.5T</td>
<td>H1S3</td>
<td>EPI Coronal</td>
<td>TP</td>
<td></td>
</tr>
<tr>
<td>Esami clinici di routine</td>
<td>H1S4</td>
<td>EPI Sagittal</td>
<td>TP</td>
<td></td>
</tr>
<tr>
<td>Fondazione Santa Lucia - Roma</td>
<td>H2S1</td>
<td>DTI 6 directions</td>
<td>TP</td>
<td></td>
</tr>
<tr>
<td>Scanner per la testa</td>
<td>H2S2</td>
<td>DTI 6 directions</td>
<td>OP</td>
<td></td>
</tr>
<tr>
<td>Siemens Magnetom Allegra 3T</td>
<td>H2S3</td>
<td>Double Echo DPT2</td>
<td>OP</td>
<td></td>
</tr>
<tr>
<td>Ricerca sul cervello</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ospedale pediatrico</td>
<td>H3S1</td>
<td>Cardiac Black Blood</td>
<td>OP</td>
<td></td>
</tr>
<tr>
<td>Bambino Gesù - Palidoro (Roma)</td>
<td>H3S2</td>
<td>EFF</td>
<td>OP</td>
<td></td>
</tr>
<tr>
<td>Scanner a corpo intero</td>
<td>H3S3</td>
<td>Q-flow</td>
<td>OP</td>
<td></td>
</tr>
<tr>
<td>Philips Achieva 1.5T</td>
<td>H3S4</td>
<td>Cardiac Short Axis</td>
<td>OP</td>
<td></td>
</tr>
<tr>
<td>Esami cardiaci su bambini</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 1. Riepilogo delle sessioni di misura dei campi di gradiente.

Campi di gradiente

Per la valutazione dei campi di gradiente è stato adottato un approccio “*worst case*”, nel senso che, nella posizione dell’operatore, l'esposizione è stata considerata omogenea nello spazio e la densità di flusso magnetico ovunque e istantaneamente pari al valore misurato in un punto specifico, rappresentativo delle condizioni di massima esposizione. Per lo stesso motivo, sono state utilizzate le sequenze di scansione RM con i segnali di gradiente più veloci.

La Tabella 1 riepiloga le caratteristiche di tutte le 11 sessioni di misura di CMG eseguite nel corso
dello studio. Come si vede, in ciascuna struttura sono state eseguite più sessioni, indicate in tabella con la lettera S seguita da un numero progressivo: così, per esempio, il codice “H3S2” indica la seconda sessione di misura CMG eseguita presso l’Ospedale Pediatrico Bambino Gésù.

Le varie sessioni effettuate in una stessa struttura differivano o per la sequenza RM utilizzata, o per la posizione del punto di misura. Per quanto riguarda quest’ultimo aspetto, si è considerato in alcuni casi (cfr. sigla TP in tabella) il punto posto immediatamente davanti all’imboccatura del bore (Figura 1), in quanto indicativo della massima esposizione possibile al di fuori del bore stesso; in altri casi (sigla OP in tabella), si è considerato un punto rappresentativo della posizione effettivamente occupata da un operatore sanitario durante un esame.

Per la misura dei campi di gradiente, che presentano forme d’onda complesse con contributi spettrali fino a qualche chilohertz, è stato messa a punto una catena di misura ad-hoc – il cui schema a blocchi è riportato in Figura 2 – composta da: (1) una sonda Narda ELT-400 (Narda Safety Test Solutions, Pfulling, Germania), dotata di sensore triassiale ed uscite analogiche; (2) un dispositivo di acquisizione dati (DAQ) Agilent U2531A (Agilent Technologies, Santa Clara, CA 95051, USA), collegato alle uscite analogiche della sonda; (3) un PC notebook standard, collegato sia alla sonda via RS232, sia al DAQ per mezzo di una connessione USB e (4) un’applicazione software appositamente sviluppata in linguaggio LabVIEW (LabVIEW 2009, National Instruments Corporation, Austin, TX 78759, USA), caricata di gestire l’intero sistema. Per le misure riportate in questo lavoro, la sonda ELT-400 è stata sempre utilizzata in modalità Field Strength (nella quale le tre uscite analogiche seguono fedelmente le forme d’onda delle tre componenti cartesiane dell’induzione magnetica), selezionando i valori più adeguati per la sensibilità e per la frequenza di taglio inferiore della banda passante. Il DAQ è stato impostato per una velocità di campionamento di 50000 campioni al secondo per canale; la durata delle acquisizioni è stata di 20 secondi per tutte le sessioni nei siti H1 ed H2 e per la sessione H3S4, di 5 secondi per le altre sessioni del sito H3.

![Figura 1. Posizione del punto di misura dei campi di gradiente nel sito H1.](image1)

![Figura 2. Schema a blocchi della catena strumentale per la misura dei campi di gradiente.](image2)

In fase di elaborazione dei dati, le forme d’onda complesse, misurate tramite l’ELT-400 e digitalizzate dal DAQ, sono state elaborate secondo il "metodo del picco ponderato", introdotto dall’ICNIRP con lo statement del 2003 [7] e poi confermato con le linee guida del 2010 [3]. Questo metodo consente di definire un indice (che nel seguito indicheremo con la sigla WP, dall’inglese weighted peak) in grado di fornire una metrica di valutazione dell’esposizione più fondata rispetto
all’utilizzo di parametri come i valori di picco o RMS; questi ultimi infatti risultano scarsamente significativi quando si tratta di segnali complessi, poiché i livelli di riferimento ICNIRP variano con la frequenza. In base al metodo del picco ponderato, il contenuto in frequenza di una forma d'onda viene elaborato pesando le ampiezze delle componenti spettrali in rapporto ai livelli di riferimento ICNIRP alle frequenze corrispondenti e tenendo anche conto delle fasi delle componenti stesse. Il valore assoluto massimo della forma d’onda così pesata costituisce l’indice cercato, il cui valore deve essere inferiore a 1 per garantire la conformità alle linee guida. In formule, per la componente X del campo avremo:

\[
WP_x(t) = \sum_i \frac{B_x(f_i)}{B_x(f_i)} \frac{\cos(2\pi f_i t + \theta_i + \varphi_i)}{\sqrt{2}}
\] (1)

dove \(B_x(f_i)\) e \(\theta_i\) sono ampiezza di picco e fase del contributo spettrale alla frequenza \(f_i\) della componente X dell’induzione magnetica e \(B_x(f_i)\) è il livello di riferimento ICNIRP alla stessa frequenza, mentre \(\varphi_i\) è lo sfasamento che verrebbe introdotto, alla frequenza \(f_i\), da una catena di filtri analogici del primo ordine, progettata per fornire una funzione di trasferimento uguale, in ampiezza, al termine \(1/\sqrt{2} B_x(f_i)\). Espressioni analoghe valgono per \(WP_y(t)\) e \(WP_z(t)\). Una volta calcolati gli indici in funzione del tempo per le tre componenti cartesiane del campo, l’indice WP complessivo si trova prendendo il valore massimo istantaneo del valore assoluto della somma RSS delle tre componenti.

L’eq. (1) può essere concretamente applicata sia in hardware, mediante una catena di opportuni filtri analogici, sia in software, mediante procedure numeriche in grado di emulare, nel dominio del tempo o della frequenza, il comportamento dei filtri stessi.

In questo lavoro si è scelto l’approccio software, optando inoltre per l’implementazione nel dominio del tempo. L’approccio software ha il vantaggio di permettere di elaborare i dati misurati in funzione dei diversi standard di esposizione considerati, semplicemente modificando i parametri delle procedure che implementano i filtri digitali, senza necessità di ripetere le misure. Su questi filtri sono stati eseguiti dei test di validazione, al fine di verificare il comportamento rispetto ai loro corrispondenti analogici.

Movimento nel campo magnetostatico

Per quanto riguarda gli aspetti legati al movimento nel CMS, l’esposizione è stata valutata per mezzo di una sonda triassiale di campo magnetico ad effetto Hall Metrolab THM-1176 (Metrolab Instruments SA, Geneva, Switzerland), indossata da volontari che hanno simulato le "azioni" tipiche degli operatori sanitari durante l’attività lavorativa. La sonda è dotata di un proprio dispositivo di digitalizzazione con uscita su porta USB, che è stata anche in questo caso collegata al PC notebook utilizzato per le misure.

Sono state simulate otto azioni (indicate nel seguito con i codici A1-A8), cinque delle quali (A4-A8) pensate per mimare il comportamento del personale tecnico durante la preparazione dei pazienti, mentre le altre tre (A1-A3) il comportamento tipico degli anestesisti, quando prendono parte agli esami. Durante ogni azione la sonda era mantenuta in posizione fissa, rigidamente collegata alla testa del soggetto esposto (considerata sede dei principali organi bersaglio per gli effetti dei campi magnetici a bassa frequenza) mediante un supporto appositamente realizzato sfruttando l’interno di un caschetto da ciclista (Figura 3). In altri termini, l’esposizione è stata analizzata in un sistema di riferimento solida con il soggetto in movimento, nel quale esso sperimenta una densità di flusso magnetico variabile nel tempo che è stata chiamata "densità di flusso magnetico percepita".

65
Figura 3. Posizionamento della sonda per la misura dell’induzione magnetica percepita in caso di movimento nel campo magnetico statico.

Anche in questo caso è stato utilizzato il metodo del picco ponderato per elaborare nel dominio del tempo le forme d’onda acquisite dalla sonda, impostata per la massima velocità di campionamento consentita, pari a 10 campioni al secondo per canale. I segnali rilevati hanno evidenziato importanti contributi spettrali a frequenze inferiori a 1 Hz, per le quali le linee guida ICNIRP-2010 non specificano livelli di riferimento. Questo problema è stato risolto estrapolando per qualsiasi frequenza superiore a 0 Hz l’andamento proporzionale a 1/f² proposto in queste linee guida per le frequenze comprese tra 1 e 8 Hz. In questo modo si sono in pratica definiti dei nuovi livelli di riferimento"estesi", da utilizzare per la valutazione degli effetti indotti dal movimento. Come per i campi di gradiente, è stato sviluppato un apposito filtro software per l'implementazione del metodo del picco ponderato esteso alle frequenze inferiori a 1 Hz.

RISULTATI

Campi di gradiente

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H1S1</td>
<td>114</td>
<td>2.44</td>
<td>12.0</td>
<td>0.415</td>
<td>1.57</td>
</tr>
<tr>
<td>H1S2</td>
<td>110</td>
<td>2.41</td>
<td>11.9</td>
<td>0.409</td>
<td>1.55</td>
</tr>
<tr>
<td>H1S3</td>
<td>65.3</td>
<td>1.13</td>
<td>5.56</td>
<td>0.210</td>
<td>0.786</td>
</tr>
<tr>
<td>H1S4</td>
<td>102</td>
<td>1.26</td>
<td>6.23</td>
<td>0.234</td>
<td>0.902</td>
</tr>
<tr>
<td>H2S1</td>
<td>2.50</td>
<td>0.318</td>
<td>1.58</td>
<td>0.046</td>
<td>0.179</td>
</tr>
<tr>
<td>H2S2</td>
<td>3.31</td>
<td>0.039</td>
<td>0.194</td>
<td>0.006</td>
<td>0.025</td>
</tr>
<tr>
<td>H2S3</td>
<td>1.10</td>
<td>0.017</td>
<td>0.085</td>
<td>0.003</td>
<td>0.013</td>
</tr>
<tr>
<td>H3S1</td>
<td>64.0</td>
<td>0.91</td>
<td>4.50</td>
<td>0.143</td>
<td>0.570</td>
</tr>
<tr>
<td>H3S2</td>
<td>110</td>
<td>1.58</td>
<td>7.85</td>
<td>0.212</td>
<td>0.860</td>
</tr>
<tr>
<td>H3S3</td>
<td>118</td>
<td>1.56</td>
<td>7.72</td>
<td>0.235</td>
<td>0.916</td>
</tr>
<tr>
<td>H3S4</td>
<td>113</td>
<td>1.45</td>
<td>7.26</td>
<td>0.191</td>
<td>0.789</td>
</tr>
</tbody>
</table>

In Tabella 2 sono riportati i risultati delle 11 sessioni di misura dei campi di gradiente, identificate per mezzo dei codici HnSn introdotti in Tabella 1. I risultati sono espressi in termini di intensità di induzione magnetica di picco $|B|$ e degli indici di picco ponderato, derivati sia per la popolazione generale sia per esposizioni occupazionali, sulla base delle precedenti (WP-1998) e delle più recenti (WP-2010) linee guida dell’ICNIRP. Maggiori dettagli ed approfondimenti per le due sessioni evidenziate in tabella sono forniti con la Figura 4 (sessione H1S1) e la Figura 5 (sessione H3S2).

Figura 4. Misure dei campi di gradiente, sessione H1S1: (a) induzione magnetica nel dominio del tempo; (b) induzione magnetica nel dominio del tempo su diversa scala dei tempi; (c) spettro in frequenza della componente z; (d) indici di picco ponderato per l’esposizione occupazionale secondo le linee guida ICNIRP-1998; (e) indici di picco ponderato per l’esposizione occupazionale secondo le linee guida ICNIRP-2010.
I valori di picco della densità di flusso magnetico rilevati variano da circa 1 μT fino a oltre 110 μT. Le misure relative allo scanner da 1.5 T (serie H1 e H3) non sono conformi con i livelli di riferimento ICNIRP-1998 per la popolazione e la maggior parte neanche con quelli applicabili all’esposizione occupazionale. Tutte le misure sono al contrario conformi con i livelli di riferimento occupazionali ICNIRP-2010 e tutti, tranne H1S1 e H1S2, anche con quelli per la popolazione. Le misure relative allo scanner da 3 T (serie H2) hanno portato a determinare valori di picco e indici WP più bassi rispetto agli scanner da 1.5T e quasi tutti sotto qualsiasi livello di riferimento, probabilmente perché quello scanner, date le sue piccole dimensioni, fa uso di bobine di gradiente che producono campi magnetici meno intensi o meglio confinati nello spazio.

È interessante osservare che le sequenze che mostrano intensità di campo simili possono in alcuni casi presentare indici WP molto diversi. Questo succede probabilmente perché i livelli di riferimento ICNIRP diminuiscono al crescere della frequenza e quindi le componenti dello spettro a frequenza più bassa si devono confrontare con valori limite più alti e pertanto sono ponderate con fattori-peso più bassi. In particolare, le componenti spettrali a bassissima frequenza di H3S2 (cfr: Figura 5 (b)), H3S3 e H3S4 sono responsabili del fatto che, mentre i valori di picco misurati sono vicini a quelli di H1S1 (il cui spettro è riportato in Figura 4 (c)) e H1S2, gli indici di picco ponderato sono invece sensibilmente inferiori.

![Figura 5. Misure dei campi di gradiente, sessione H3S2: (a) induzione magnetica nel dominio del tempo; (b) spettro in frequenza della componente y.](image)

Movimento nel campo magnetostatico

In Tabella 3 è riportata una sintesi delle “azioni” esaminate per la valutazione dell’esposizione dovuta al movimento nel campo statico. I risultati sono espressi in termini di valori di picco $|B|$ dell’induzione magnetica e di valore massimo degli indici di picco ponderato, sia per la popolazione sia per le esposizioni occupazionali, in base alle linee guida ICNIRP precedenti (WP-1998) e attuali (WP-2010 “estesi”).

È interessante osservare come il rispetto dei limiti ICNIRP per i campi statici [8] non sia di per sé sufficiente a garantire il rispetto dei livelli di riferimento ICNIRP-1998 per i campi percepiti come variabili nel tempo a causa del movimento, quando le forme d’onda vengono elaborate in base al metodo del picco ponderato; questo resta vero anche applicando le più permissive linee guida.
ICNIRP-2010. L’azione A3, sebbene costituisca un caso estremo (perché il volontario muove la testa proprio dentro il bore, per mimare una ispezione presso la testa del paziente), tuttavia illustra perfettamente questo aspetto.

<table>
<thead>
<tr>
<th>Codice</th>
<th>Durata [s]</th>
<th>[B] [mT]</th>
<th>WP-1998 occupazionale</th>
<th>WP-1998 popolazione</th>
<th>WP-2010 occupazionale “esteso”</th>
<th>WP-2010 popolazione “esteso”</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>24.3</td>
<td>61.0</td>
<td>0.230</td>
<td>1.16</td>
<td>0.104</td>
<td>0.518</td>
</tr>
<tr>
<td>A2</td>
<td>58.3</td>
<td>116</td>
<td>0.448</td>
<td>2.26</td>
<td>0.151</td>
<td>0.747</td>
</tr>
<tr>
<td>A3</td>
<td>27.7</td>
<td>1430</td>
<td>6.130</td>
<td>30.9</td>
<td>1.67</td>
<td>8.24</td>
</tr>
<tr>
<td>A4</td>
<td>68.2</td>
<td>59.4</td>
<td>0.247</td>
<td>1.24</td>
<td>0.058</td>
<td>0.286</td>
</tr>
<tr>
<td>A5</td>
<td>43.7</td>
<td>49.4</td>
<td>0.179</td>
<td>0.904</td>
<td>0.046</td>
<td>0.228</td>
</tr>
<tr>
<td>A6</td>
<td>52.9</td>
<td>36.3</td>
<td>0.139</td>
<td>0.703</td>
<td>0.065</td>
<td>0.324</td>
</tr>
<tr>
<td>A7</td>
<td>52.4</td>
<td>56.6</td>
<td>0.266</td>
<td>1.340</td>
<td>0.065</td>
<td>0.325</td>
</tr>
<tr>
<td>A8</td>
<td>83.9</td>
<td>171</td>
<td>0.684</td>
<td>3.45</td>
<td>0.083</td>
<td>0.410</td>
</tr>
</tbody>
</table>

Tabella 3. Sintesi dei risultati delle misurazioni per la valutazione dell’esposizione dovuta al movimento nel campo statico (sito H3). Le azioni A1-A3 mimano i movimenti degli anestesisti coinvolti con pazienti pediatrici sedati. Le azioni A4-A8 mimano movimenti tipici del personale tecnico durante la preparazione dei pazienti. Gli indici WP sono in valore assoluto, non percentuale.

Figura 6. Misure di induzione magnetica percepita dovuta al movimento nel campo statico per le azioni A2 (il volontario compie alcuni movimenti standard nella posizione di lavoro vicino al magnet), A8 (il volontario posiziona il paziente) e A3 (il volontario controlla il paziente chinandosi all’interno del bore); per quest’ultima è riportato anche lo spettro in frequenza.
In tutte le altre azioni, l’esposizione è risultata sempre compatibile con i livelli di riferimento ICNIRP-1998 per i lavoratori (ma non per la popolazione) e con entrambi i livelli di riferimento ICNIRP-2010 “estesi”.

Anche in questo caso, si vede come non sempre ad intensità di induzione magnetica maggiore corrisponda necessariamente un valore maggiore degli indici WP, confermando così la fondatezza dell’utilizzo di una metrica di valutazione basata sul metodo del picco ponderato.

CONCLUSIONI

È stata presentata una metodica per la valutazione dell’esposizione occupazionale del personale sanitario addetto agli apparati diagnostici a risonanza magnetica, dovuta ai campi magnetici di gradiente e al movimento nel campo magnetico statico.

La metodica fa uso di catene strumentali appositamente assemblate e si basa sul metodo del picco ponderato per l’elaborazione radioprotezionistica delle forme d’onda complesse che caratterizzano le tipologie di sorgenti considerate. Essa fa inoltre ricorso a scelte di tipo *worst-case* per quanto riguarda la distribuzione spaziale dei campi e la selezione delle sequenze RM impiegate. Il metodo del picco ponderato è stato implementato in *software* nel dominio del tempo mediante una procedura numerica in grado di emulare il funzionamento di una opportuna catena di filtri analogici del primo ordine. Come riferimento normativo, si sono considerate sia le linee guida ICNIRP del 1998, sia quelle del 2010. A proposito di queste ultime linee guida, in fase di valutazione dell’esposizione dovuta al movimento nel campo statico si è reso necessario – visto il contenuto spettrale del segnale rilevato – prenderne una ragionevole estensione a frequenze inferiori ad 1 Hz.

Applicata in situazioni reali nel corso di campagne di misura effettuate presso alcune strutture sanitarie nell’area romana, la metodica ha permesso di evidenziare come l’esposizione ai campi di gradiente degli apparati RM a 1.5T a corpo intero violasse le linee guida ICNIRP-1998 per le esposizioni occupazionali, ma rispettasse invece le meno restrittive linee guida del 2010. L’esposizione ai campi di gradiente dello scanner a 3T per la testa è risultata invece compatibile anche con le linee guida del 1998.

L’esposizione dovuta al movimento nel campo statico di uno scanner a 1.5T a corpo intero è risultata conforme ad entrambe le linee guida in tutti le azioni simulate, salvo il caso limite in cui il soggetto esposto aveva introdotto e mosso la testa proprio dentro il *bore* dello scanner. Lo studio ha comunque mostrato come il rispetto delle linee guida ICNIRP-2009 specifiche per l’esposizione al campo magnetostatico non sia sufficiente a garantire il rispetto dei limiti posti a tutela verso gli effetti di induzione che possono essere associati al movimento nel campo stesso.

RICONOSCIMENTI

Il lavoro presentato si è basato sull’attività di ricerca coordinata e finanziata dall’INAIL (ex ISPESL) nell’ambito dei progetti B/02/DIL/07 e F/01/DIL/09.

Gli autori ringraziano Vincenzo Brugaletta, Giancarlo Burrieschi e Floriana Sacco dell’INAIL e Sergio Mancini dell’ENEA per la preziosa assistenza tecnica fornita.

Un particolare ringraziamento per l’ospitalità e la collaborazione va inoltre al personale medico delle strutture sanitarie coinvolti e in particolare a Luisa Begnozzi, Angela Coniglio e Stefania Teodoli dell’Ospedale San Giovanni Calibita Fatebenefratelli; a Andrea Cherubini e Umberto Sabatini della Fondazione Santa Lucia; a Vittorio Cannata, Elisabetta Genovese, Marco Carni e Marco Gargani dell’Ospedale Pediatrico Bambino Gesù.

BIBLIOGRAFIA

5. IEEE (Institute of Electrical and Electronics Engineers). *IEEE Standard for safety levels with respect to human exposure to electromagnetic fields, 0–3 kHz.* IEEE Std C95.6, 2002.

