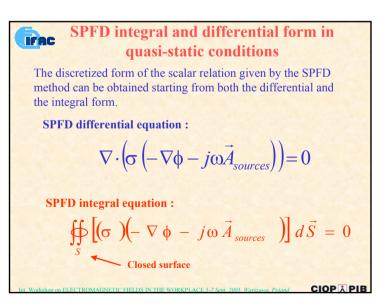
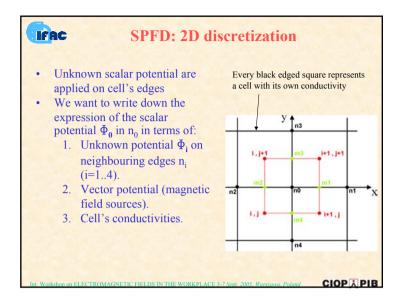
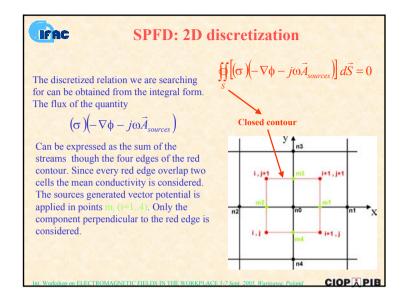


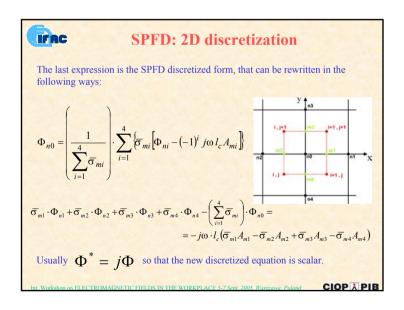
SPFD in quasi static conditions: IFAC current density expression Once scalar potential has been calculated: $\vec{J} = \sigma \vec{E} = \sigma \left(-\nabla \phi - j \omega \vec{A}_{sources} \right)$ CIOP & PIB





	SPFD =−jω∯σ Ā _{sources} dŠ	2D discretize $\int_{-1}^{4} \left(\sigma \cdot \nabla \phi \cdot \hat{n} \right) dx$	$= -j\omega l_c \sum_{mi}^{4} \left(\sigma_{mi} \vec{A}_{mi} \cdot \hat{n}_{mi} \right)$
s	y În₃	$c \sum_{i=1}^{\infty} (0 mi + \psi_{mi} + v_{mi})$ Considering:	$\int \mathcal{O} \mathcal{V}_c \sum_{i=1}^{\infty} (\mathcal{O}_{mi} \mathcal{O}_{mi} \mathcal{O}_{mi})$
i, j+1 m2 i, j	m3 i+1, j+1 m1 l_c m1 i+1, j	$\overline{\sigma}_{m2} = \frac{\sigma_{i,j+1} + \sigma_{i,j}}{2}$ and: $A_{m1} = \overline{A}(m_1) \cdot \hat{i}_x$ $A_{m2} = \overline{A}(m_2) \cdot \hat{i}_x$ where:	$\overline{\sigma}_{m3} = \frac{\sigma_{i+1,j+1} + \sigma_{i,j+1}}{2}$ $\overline{\sigma}_{m4} = \frac{\sigma_{i,j} + \sigma_{i+1,j}}{2}$ $A_{m3} = \vec{A}(m_3) \cdot \hat{i}_y$ $A_{m4} = \vec{A}(m_4) \cdot \hat{i}_y$ $\hat{n}_{m3} = \hat{i}_y$
$\overline{\sigma}_{m1} \frac{\Phi_{n1} - c}{lc}$		$\hat{n}_{m2} = -\hat{l}_x$ $\overline{\sigma}_{m3} \frac{\Phi_{n3} - \Phi_{n0}}{lc} + \overline{\sigma}_{m4} \frac{\Phi_{n4}}{l}$ $= -j\omega (\overline{\sigma}_{m1}A_{m1} - \frac{1}{l})$ HE WORKPLACE 5-7 Sem. 2005. Beat	$\frac{-\Phi_{n0}}{c} = \\ \overline{\sigma}_{m2}A_{m2} + \overline{\sigma}_{m3}A_{m3} - \overline{\sigma}_{m4}A_{m4})$



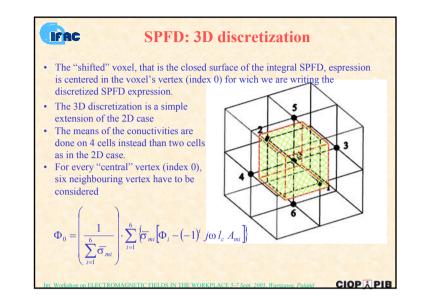


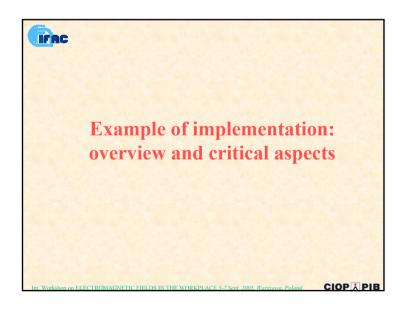
SPFD: 2D discretization
The last expressions can be obtained also applying the finite difference expressions to the expanded differential form, that is:

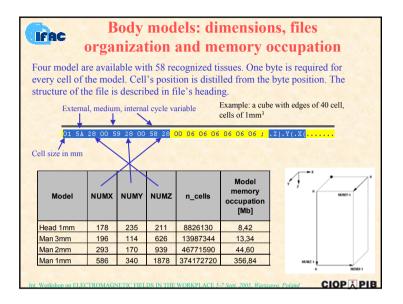
$$\frac{\nabla \cdot \left(\sigma \left(-\nabla \phi - j\omega \vec{A}_{sources}\right)\right) = 0}{\psi}$$

$$\frac{\partial \sigma}{\partial x} \frac{\partial \Phi_x}{\partial x} + \frac{\partial \sigma}{\partial y} \frac{\partial \Phi_y}{\partial y} + \sigma \left(\frac{\partial^2 \Phi_x}{\partial x^2} + \frac{\partial^2 \Phi_y}{\partial y^2}\right) = -j\omega \left(\frac{\partial \sigma}{\partial x} A_x + \sigma \frac{\partial A_x}{\partial x} + \frac{\partial \sigma}{\partial y} A_y + \sigma \frac{\partial A_y}{\partial y}\right)$$
That aproach leads to the same discretized expressions but entails more algebric operation.

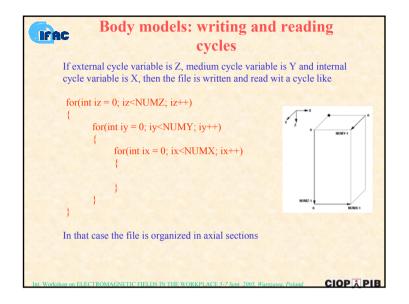
Post-processing	
$\vec{J}_{i,j} = \sigma_{i,j} \cdot \left(E_{m1} \cdot \hat{i}_x + E_{m3} \cdot \hat{i}_y \right)$	
where:	
$E_{m1} = -\left(\frac{\Phi_{i+1,j}^* - \Phi_{i,j}^*}{l_c} + \omega A_{m1}\right)$	
$E_{m3} = -\left(\frac{\Phi_{i,j+1}^* - \Phi_{i,j}^*}{l_c} + \omega A_{m3}\right)$	
Different post-processing approaches are appliable.	
Int. Workshop on ELECTROMAGNETIC FIELDS IN THE WORKPLACE 5-7 Sent. 2005. Warszawa, Poland CIOP	PIB

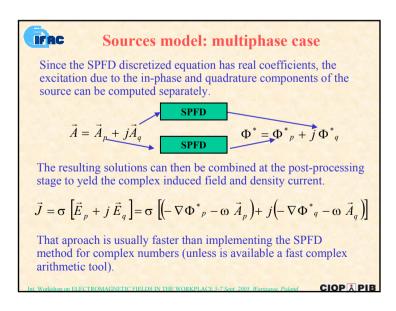






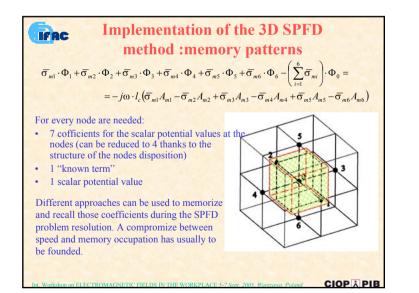
Sources models: wired models and
numerical integration
The source potential is related to That has the solution (considering the
the source currents by: conductor thickness negligible): $d\vec{C}$
$\nabla^2 \vec{A}_s = -\mu \cdot \vec{J}_s \longrightarrow \vec{A}_s(Q) = \frac{\mu I}{4\pi} \cdot \int_{Conductor} \frac{dC}{ Q-P }$
The latter expression can be integrated numerically. If a conductor is represented
by a segmented line, the analitical solution exists. A current I flowing along the
portion of the z axis, between $z = a$ and $z = b$ generates a vector potential in Q
given by: $\vec{A}_s(x, y, z) = \frac{\mu I}{4\pi} \cdot \ln\left(\frac{\sqrt{x^2 + y^2 + (z - b)^2} - (z - b)}{\sqrt{x^2 + y^2 + (z - a)^2} - (z - a)}\right)\hat{i}_z$
if $a \to -\infty$ and $b \to +\infty$ if $a = 0$ and $b \to +\infty$
$\vec{A}_{s}(x,y,z) = -\frac{\mu I}{4\pi} \cdot \ln(x^{2} + y^{2})\hat{i}_{z} \qquad \vec{A}_{s}(x,y,z) = -\frac{\mu I}{4\pi} \cdot \ln(\sqrt{x^{2} + y^{2} - z^{2}} - z)\hat{i}_{z}$
The expression ror arbitrary oriented elements can be derived using rotation and translation
Int. Workshop on ELECTROMAGNETIC FIELDS IN THE WORKPLACE 5-7 Sept. 2005. Warszawa. Poland CIOP A PIB

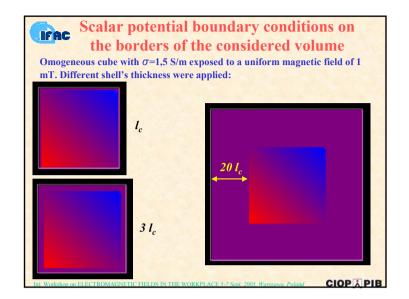




Scalar potential boundary conditions on the borders of the considered volume
 \$\vec{\sigma}_{m1} \cdot \Phi_{n1} + \vec{\sigma}_{m2} \cdot \Phi_{n2} + \vec{\sigma}_{m3} \cdot \Phi_{n3} + \vec{\sigma}_{m4} \cdot \Phi_{n4} - \bigg(\biggs_{m1}^4 \vec{\sigma}_{m1} \bigg) \cdot \Phi_{n0} = \\ \equiv - j\omega \cdot \lambda_{\omega} \biggl(\vec{\sigma}_{m1} \mathcal{A}_{m1} - \vec{\sigma}_{m2} \mathcal{A}_{m2} + \vec{\sigma}_{m3} \mathcal{A}_{m3} - \vec{\sigma}_{m4} \mathcal{A}_{m4} \biggr)\$
 Scalar potential values in conductive regions (borders included) are not influenced by values in not conductive regions. The body model can be incorporated in a shell of vacuum with thickness of \$I_c\$.
 The shell is added for computational reason: we don't wont to go outside the discretized domine border during iteration. Scalar potential on the border is fixed (usually to 0) and iteration stops one cell before.

CIOP & PIB





Implementation of the 3D SPFD
method :memory patterns

Example of memory pattern on a 32 bit platform using double precision: amount of memory for every grid node.

- 1 double for every coefficient (8 coeff. 5 if the simmetry of the matrix is taken into account and in particular that σ_{m2} is σ_{m1} for the neighbouring cell).
- 1 double for the unknown scalar potential value in the cell

IFAC

48 bytes for every cell

Other patterns can be used and the number of bytes needed for every cell can be decreased to $15\,$

Model	nx	ny	nz	n_cells	Model memory occupation [Mb]	Demanded resources[Mb]
Head 1mm	178	235	211	8826130	8,42	404
Man 3mm	196	114	626	13987344	13,34	640
Man 2mm	293	170	939	46771590	44,60	2141
Man 1mm	586	340	1878	374172720	356,84	17128
Int. Workshop on ELE	CTROMAGN	ETIC FIELD	S IN THE WO	ORKPLACE 5-7 Sept	. 2005. Warszawa. Polan	

nx	ny	nz	kcells	iterations	time [s]
42	42	42	74	230	3,89
44	44	44	85	219	4,26
48	48	48	111	198	5,08
60	60	60	216	145	10,44
65	65	65	275	122	20,42
70	70	70	343	92	22,12
75	75	75	422	109	35,9
80	80	80	512	106	42,78
	ad (1 mm) n) more tha r		sed to a unifo	orm magnetic fi	eld of 1 m