I raggi X e i raggi γ: fonti, effetti, applicazioni e protezione

A. Foglio ParaDipartimento di Ingegneria nuclearePolitecnico di Milano

Raggi X e raggi γ

- Cosa è un raggio X? Un raggio X (caratteristico) è un fotone proveniente dalla diseccitazione degli elettroni orbitanti attorno ai nuclei con energie fino a ≈ 120 keV
- Cosa è un raggio γ? Un raggio γ è un fotone emesso dai nuclei eccitati degli atomi radioattivi con energie da pochi keV a molti MeV.
- Un fotone è un 'pacchetto' di energia elettromagnetica, di energia E collegata alla frequenza v della trattazione ondulatoria dalla relazione E = hv, con h=6.63-10⁻³⁴ J-s (h è la costante di Planck).
- Un fotone è privo di massa e di carica elettrica, ma possiede una quantità di moto p= hv/c (c=3·10⁸ m/s).

continua...

- p ed E globalmente vengono conservate nelle interazioni, confermando, secondo Einstein, il comportamento corpuscolare dei fotoni.
- Se $h\nu = 1 \text{ keV} \rightarrow \nu = 2.4 \cdot 10^{17} \text{ Hz}$, quindi molto maggiore delle frequenze nel visibile ($\approx 10^{15} \text{ Hz}$).
- I raggi γ furono scoperti nel 1896 da Becquerel a seguito delle immagini lasciate su una lastra fotografica da un minerale di uranio. Lo stesso Becquerel intuì la loro similitudine con i raggi X scoperti da poco da Roentgen.

continua...

Raggi X e γ (come le radiazioni visibili, infrarosse, ed ultraviolette) sono tutti costituenti lo spettro elettromagnetico, e differiscono solo per la loro origine.

- I raggi X <u>caratteristici</u>, provenienti dalle diseccitazioni atomiche hanno normalmente energie inferiori a quelle dei raggi γ, provenienti dalle diseccitazioni nucleari.
- Sono però chiamate X anche le radiazioni emesse dalle cariche elettriche accelerate (o decelerate, da cui il nome 'Bremsstrahlung'). Questi raggi X hanno energie fino all'energia massima delle particelle frenate e quindi anche superiore a quella dei raggi γ usuali.

continua...

Sono inoltre chiamate radiazioni γ anche le radiazioni provenienti dall'annichilazione dell'antimateria, in coppie di fotoni di 511 keV nell'annichilazione di elettroni positivi e di quasi 1000 MeV nell'annichilazione di antiprotoni.

- Distingueremo nel seguito fra radiazioni X e γ solo quando necessario per l'applicazione considerata.
- Tutti i fotoni viaggiano nel vuoto alla velocità della luce c = 3.108 m/s.

Sorgenti di radiazioni γ

- Centinaia di radionuclidi emettono radiazioni γ.
- Li possiamo distinguere in:
- Primordiali, se risalenti alla creazione del sistema solare, con T1/2 dell'ordine di 10⁹ yr. Sono ancora presenti con i loro successori a vita più breve (ad esempio U-238 →...Ra-226 → Rn-222..)
- <u>Cosmogenici</u>, se formati da interazioni di radiazioni cosmiche (ad esempio Be-7, 53.3 d, da interazioni su N ed O).
- Provenienti da attività umane (per attivazione, fissione, o in genere per reazioni nucleari).

Nuclidi primordiali

Nuclide Dimezzamento % %.

Uranio-235 7.04 x 10⁸ yr 0.72..% dell'U nat.

Uranio-238 4.47 x 10⁹ yr 99.27..% dell'U nat.

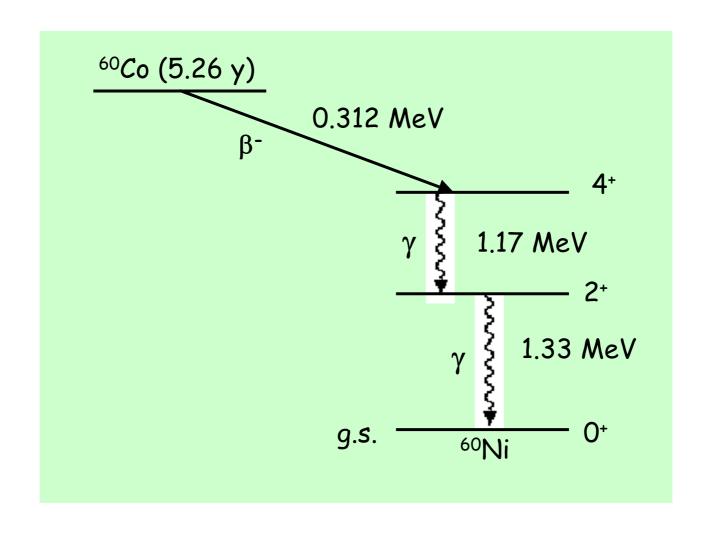
(2.7 mg/kg nella crosta terrestre)

Torio-232 1.4x-10¹⁰ yr 100% (9.6 mg/kg nella crosta terrestre)

Potassio-40 1.28-10⁹ yr 0.012% del K nat. (**21 g / kg di K nat. nella crosta terrestre**)

La loro presenza è facilmente rivelabile nel conteggio di fondo dei rivelatori e con la radiazione cosmica contribuisce alla dose di radiazioni.

Alcuni nuclidi di origine artificiale

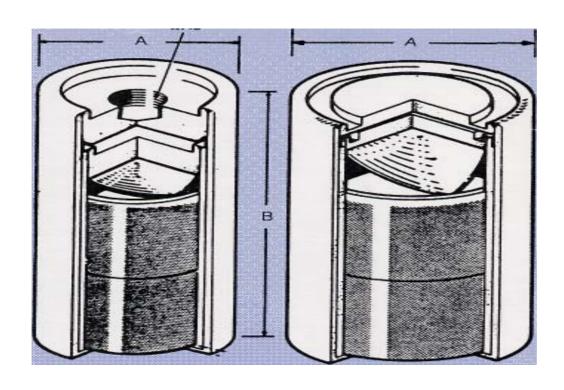

- Nuclide T_{1/2}
- $\frac{\text{Tc-99m}}{\text{E}_{\gamma}}$ 6.0 hr
- I 131 8.04 d Ey = 0.364 keV
- $\frac{\text{Co-}60}{\text{E}\gamma = 1173 + 1332 \text{ keV}}$
- Cs 137 30.1 yr $E_{\gamma} = 662 keV$

Caratteristiche

- <u>Prodotto</u> di decadimento del ⁹⁹Mo (per diagnosi mediche)
- Prodotto di fissione. La fissazione nella tiroide lo rende sia pericoloso sia utile.
- Prodotto di attivazione.

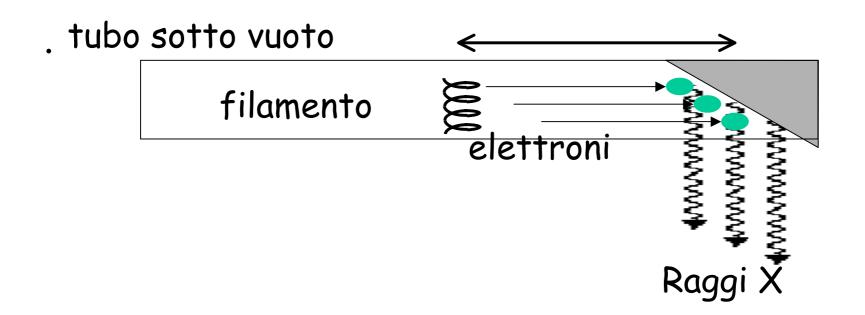
 Prodotto di fissione con abbondanza elevata

Lo schema di decadimento del Co-60


Sorgenti γ extraterrestri: i γ -ray burst

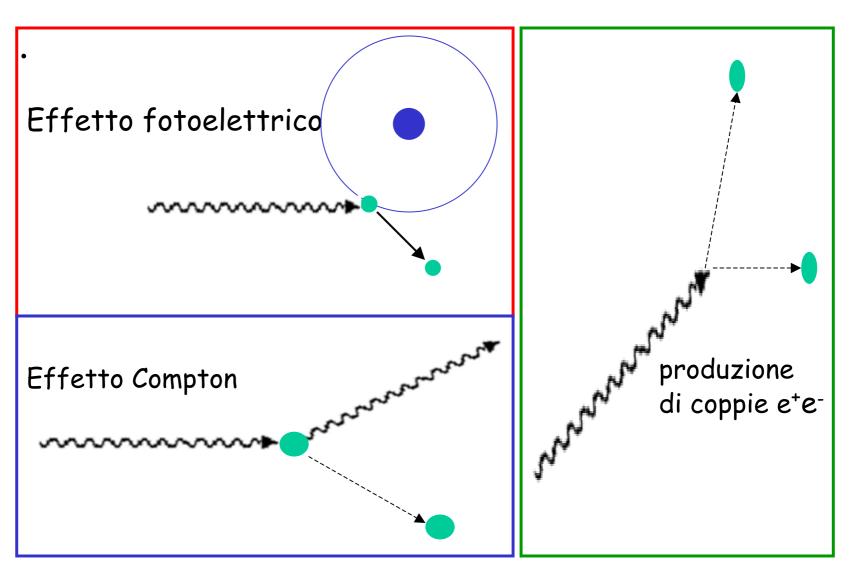
- Sono improvvisi 'flash' di di fotoni γ da direzioni diverse del cielo.
- Ormai migliaia di osservazioni di 0.1 ÷ 10³ s, energie 0,1÷1 MeV, flussi 0.1÷100 fot./ cm²/s.
- Prime osservazioni da satelliti militari per il controllo delle esplosioni nucleari nell'atmosfera.
- Energie totali di emissione 3-10²⁸ ÷ 3-10³⁸ kWh (a seconda della distanza) non compatibili con eventi terrestri.
- Con il satellite astronomico 'Beppo-Sax' si sono rivelate come gigantesche esplosioni in lontanissime galassie.
- Con ulteriori osservazioni si sono rivelati γ fino al TeV.

Luce di sincrotrone


- Radiazione elettromagnetica emessa da elettroni circolanti negli acceleratori a motivo della loro accelerazione e simile alla Bremsstrahlung.
- Effetto sia indesiderato da ridurre (con i grandi anelli del CERN), sia utile da aumentare (come negli impianti Elettra, Trieste, e ILL, Grenoble).
- Aumento con 'insertion devices', ondulatori e 'wigglers' che fanno oscillare gli elettroni nei tratti rettilinei.
- Energie disponibili da qualche eV a 100 keV.
- Applicazione tipica: spettroscopia dei fotoelettroni (da correlare ai potenziali di ionizzazione).

Sorgenti industriali di radiazioni γ [dal catalogo Amersham]

Apparecchiature per la produzione di raggi X di Bremsstrahlung


Gli elettroni accelerati da una differenza di potenziale di centinaia di volt, sono frenati in un materiale ad alto Z, emettendo radiazione X di Bremsstrahlung

Interazioni dei raggi X e γ con la materia

- Per le energie di interesse nelle applicazioni (industriali e medicali) sino a 10 MeV, 3 interazioni sono prevalenti:
- L'effetto fotoelettrico, a basse energie (< 1 MeV), crescente con Z⁵.
- La diffusione Compton (incoerente o coerente), ad energie intermedie (0.5 - 5 MeV) (cresce con Z)
- La produzione di coppie, ad alte energie(>1.02 MeV), crescente con Z².
- Ogni interazione è di tipo probabilistico e si esprime tramite un coefficiente lineare di attenuazione μ (cm⁻¹) funzione dell'energia e del materiale.

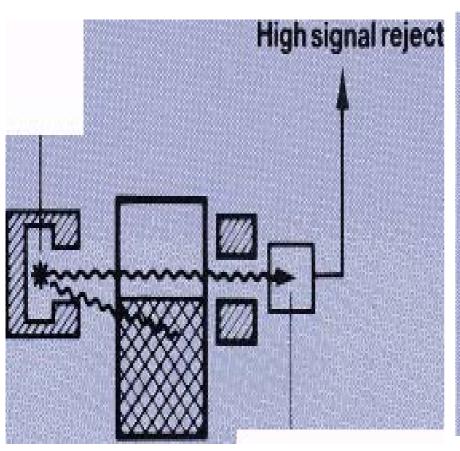
Le principali interazioni delle radiazioni γ

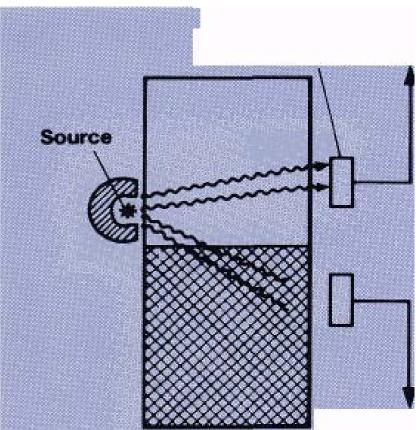
Attenuazione delle radiazioni X o γ

L'attenuazione di un fascio collimato di radiazioni X o γ , di tipo probabilistico per un singolo fotone, viene descritta tramite il valore medio di molti fotoni sopravvissuti dopo lo strato d con la legge:

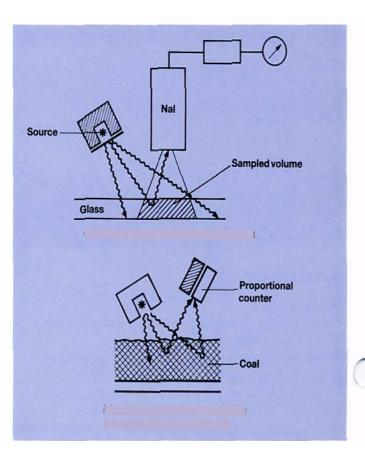
$$I(d) = I(0) \cdot \exp(- \mu \cdot d),$$

in cui μ

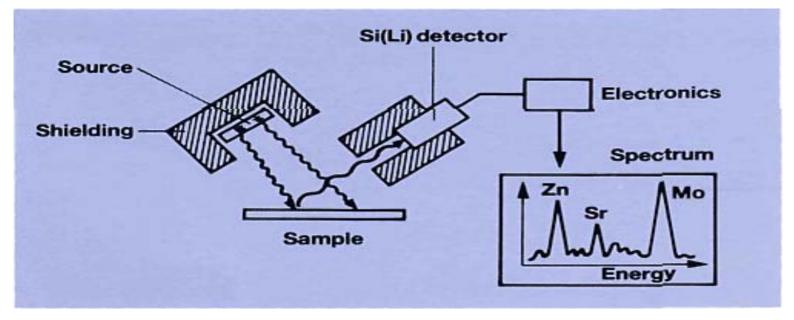

- <u>cresce</u> linearmente con la densità,
- <u>cresce</u> come Z¹ ÷ Z⁵ con il numero atomico Z,
- <u>decresce</u> con l'energia (sino a qualche MeV) per poi crescere per effetto della creazione di coppie.


Per assorbire le radiazioni X o γ si usano materiali ad alto Z ed alta densità (ad es. Pb e talora U)

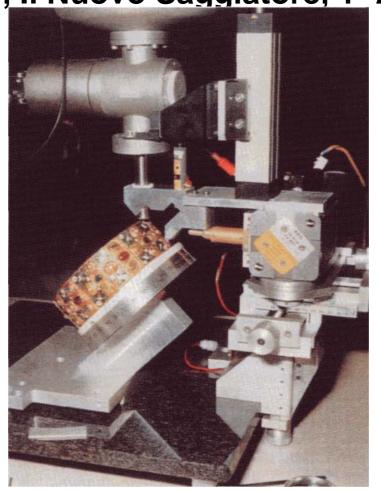
Applicazioni delle attenuazioni X o γ


- L'attenuazione di un fascio di fotoni X in organi di diversa densità è alla base della radiografia medica.
- In maniera del tutto analoga, con radiazioni γ
 (tipicamente con sorgenti di iridio-192 o cobalto60) si ispezionano parti metalliche e saldature
 (radiografie industriali, senza necessità di generatori alimentati).
- L'attenuazione ed anche lo scattering (cioè la variazione di direzione per effetto Compton) sono utilizzati per misure di livello e densità.

Misure di livello (sia fisso che variabile) con attenuazione γ


Misure di flusso di materiale tramite scattering di radiazioni γ

Analisi per fluorescenza X

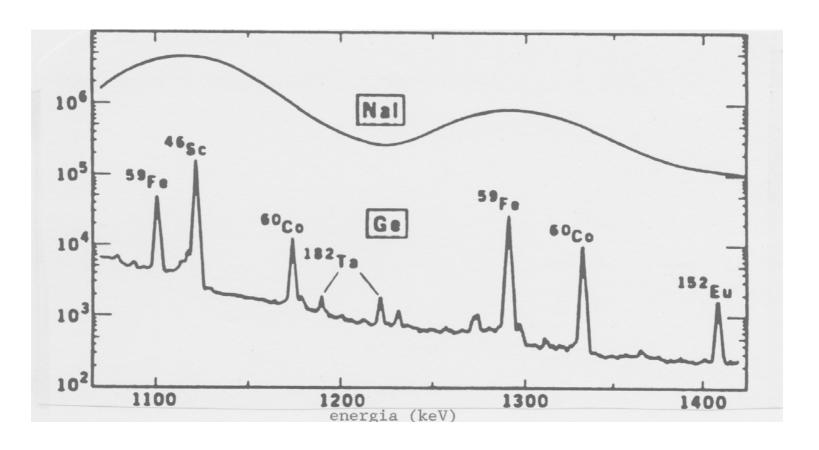

- Si irraggia il campione con radiazioni (X, γ,elettroni) in grado di fare emettere le radiazioni X caratteristiche K o L dagli elementi presenti (1 ÷ 30 keV).
- Si analizzano gli X emessi con un rivelatore ad alta risoluzione energetica (semiconduttore di Si o Ge) e si risale agli elementi presenti (in superficie).

Analisi per fluorescenza X.

Analisi elementale della Corona Ferrea con risoluzione spaziale di 1 mm

(da M. Milazzo, Il Nuovo Saggiatore, 1-2, 2002)

Rivelatori γ a materiale semiconduttore (Ge di alta purezza). I rivelatori sono collegati a vasi 'Dewar' contenenti N₂ liquido [costr.EURISYS]

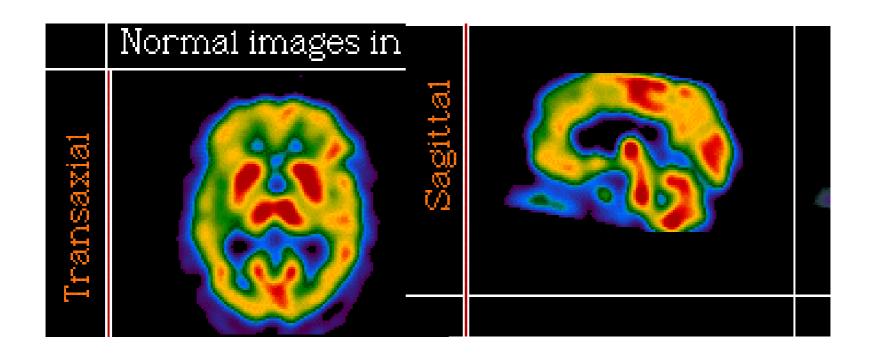

Rivelatori per radiazioni X e γ

Si è visto che per ottenere la massima risoluzione energetica (attorno allo 0.1% a 1 MeV) si utilizzano rivelatori a materiale semiconduttore di Ge e Si, raffreddati alla temperatura dell'azoto liquido, -196°C.

Nelle applicazioni, le energie presenti sono spesso note, per cui non è richiesta una elevata risoluzione energetica.

Si usano allora: Rivelatori a scintillazione, come lo Nal(TI) e il 'BGO' (sigla del germanato di bismuto) con alta efficienza (per volume e densità)

 Rivelatori a semiconduttore a temperatura ambiente come il CdZnTe, usato nella metodologia del linfonodo sentinella. Paragone fra le risposte di un rivelatore per radiazioni γ di Nal e di Germanio nell'intervallo di energie delle 'righe' del cobalto-60. La risoluzione del Ge è 40 volte migliore.

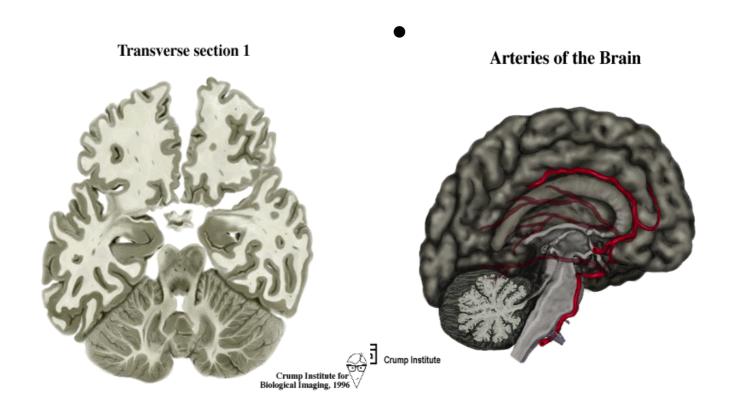


Emettitori γ usati come traccianti

- I nuclidi emettitori γ possono essere associati a molecole con un particolare percorso in un campione (dal corpo umano all'ambiente in generale). A motivo della elevata trasmissione delle radiazioni γ, funzionano allora come 'traccianti', rivelabili all'esterno, preferibilmente se a vita breve.
- Se le molecole si indirizzano in modo preferenziale verso zone patologiche di un organo del corpo umano, si ha la possibilità di mappare dall'esterno queste zone ('SPECT', Single Photon Emission Computerized Tomography).
- Allo stesso modo possiamo seguire dall'esterno il cammino di sorgenti γ in condutture, terreni,..

Immagini 'SPECT' con Tc-99m, da

http://brighamrad.harvard.edu/education/online/BrainSPECT/Normal Anat/



PET, Positron Emission Tomography

- La localizzazione delle zone patologiche di arrivo preferenziale dei traccianti γ può essere migliorata (si riduce il fondo) se vengono emesse contemporaneamente 2 radiazioni γ in direzione opposte (e non una 'singola') come avviene nell'annichilazione delle particelle β + emesse da nuclidi con pochi neutroni
- I nuclidi di interesse sono C-11 (T1/2= 20.3 min) e F-18 (T1/2 = 110 min), in varie forme molecolari. Per il breve T1/2 si ha la necessità di una loro produzione 'in loco' (o almeno entro poche decine di km). Si parla allora di **PET**, contraddistinta dalla **SPECT**.

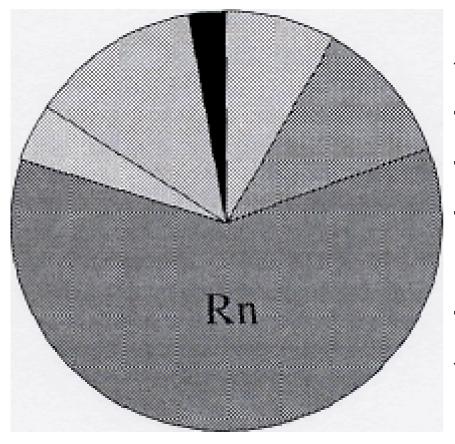
Immagini cerebrali con la PET, da http://

/laxmi.nuc.ucla.edu:8000/PBA/HTML/frame_figures.html

Altre applicazioni delle radiazioni γ

 Trattamento post-operatorio di tumori ('bombe' al Cesio e al Cobalto (sino a 10⁴ curie di Cs-137 o Co-60).

Sterilizzazione di presidi medicali.


 Trattamento di legno, plastiche, gomme (per migliorarne la durabilità).

Fondo naturale γ di radiazione

- L'unità di misura per le conseguenze sull'uomo del fondo di radiazioni è il sievert (Sv), pari a 1 J/kg per radiazioni X e γ.
- Il fondo naturale γ è all'incirca costante nel mondo,
 ≈ 1 mSv/yr, (0.9 ÷ 1.75 mSv/yr in CH).
 - Ad esso si aggiungono i raggi cosmici, ma sopratutto il gas naturale Radon (che emette con i successori anche radiazioni α e β ed è molto elevato nel Ticino facendo arrivare la dose a 2.4 mSv/yr).
- In alcune aree popolate si osservano tuttavia alti livelli di radiazione (in Brasile, India e Iran) per concentrazioni elevate di minerali radioattivi nel suolo (torio ed uranio), sino a centinaia di volte in più del fondo usuale.

Ripartizione della dose totale nel Canton Ticino

(dal 'Rapporto sulla presenza di gas Radon nelle abitazioni del Canton Ticino, a cura del 'Laboratorio Cantonale della Sanità e della Socialità)

←Applic. mediche 14%

-Radiaz, terrestri 8%

-Radiaz. cosmiche 5%

-Radionucl.naturali 5%

nel corpo umano

-Altro 3%

←Radon+successori: 65%

Effetti patologici delle radiazioni

Entro 10 anni dalla scoperta di Roentgen era stata riconosciuta e sommariamente descritta una gran parte delle patologie da <u>dosi elevate e intense</u> di radiazioni ionizzanti. Gli effetti erano deterministici, quindi certi per dosi elevate.

Fra questi, eritemi, sterilità negli animali da laboratorio, anemie e leucopenie da raggi X.

 Nelle condizioni attuali, con dosi normalmente limitate (salvo il caso di incidenti), si sono messi in evidenza oltre agli effetti deterministici anche gli effetti stocastici.

Effetti stocastici (cioè probabilistici) di induzione di patologie

- Stime di rischio di induzione di neoplasie.
 - Per basse dosi e tassi modesti, 4-5% per ogni sievert ricevuto (cioè 1 neoplasia ogni 20-25 Sv). Valutazione usata per le popolazioni a seguito dell'incidente di Chernobyl, da cui:
 0.5 mSv/persona (in Italia) x 56 milioni di persone = 28.000 Sv → >10^3 neoplasie stimate (nei decenni successivi, quindi non individuabili rispetto alle oltre 160.000 neoplasie per anno).

Non sono stati considerati possibili effetti di soglia

 La percentuale può raddoppiare per dosi elevate sul singolo individuo (situazioni di incidente).

Valutazione delle dose γ

La dose da radiazioni γ sull'uomo dipende:

- In modo proporzionale all'attività della sorgente ed al tempo di esposizione.
- In modo inversamente proporzionale <u>al quadrato</u> della distanza.
- Dipende dall'energia delle radiazioni γ attraverso la loro attenuazione nei materiali interposti e la loro cessione di energia nel corpo umano.
- Può essere calcolata, in assenza di schermi, tramite i fattori Γ , definiti per ogni nuclide.

Calcolo di dosi γ tramite i 'Gamma Factors', [dose da 1 mCi, in mSv/hr, a 1 cm] (da www.ehs.ucsf.edu)

• Americio-241 (0.060 MeV +altre): Γ =13.0

• Cesio-137 (0.662 MeV) Γ = 34.3

• Cobalto-60 (1.17+1.33 MeV) Γ = 132

• I-131 (0.364 MeV) Γ = 22.8.

• Tecneto-99m (0.14 MeV) Γ = 7.6

Formula approssimata a 30 cm, per E_γ > 0.4
 MeV: H (mSv/hr) = 0.06 · E(MeV) · A(mCi)

Valutazione finale

- Dosi γ da confrontare con i limiti di legislazione, pari a 1 mSv/yr per la popolazione.
- Da limitare se possibile, <u>riducendo</u> l'attività delle sorgenti e il tempo di esposizione,
 - <u>aumentando</u> la distanza dalla sorgente, <u>interponendo</u> opportuni schermi (ad esempio di piombo, o talora anche di uranio)
 - Si ricordi comunque il fondo naturale globale (comprendendo anche il contributo di Radon e successori), in media 2.4 mSv/yr.