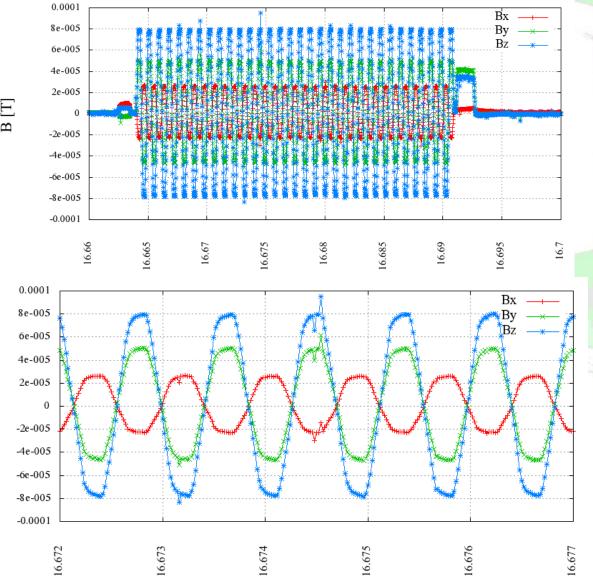


Sommario

- Riassunto dei risultati delle analisi dosimetriche relative all'esposizione ai campi di gradiente.
- Riassunto dei risultati delle analisi dosimetriche relative al movimento in campo statico

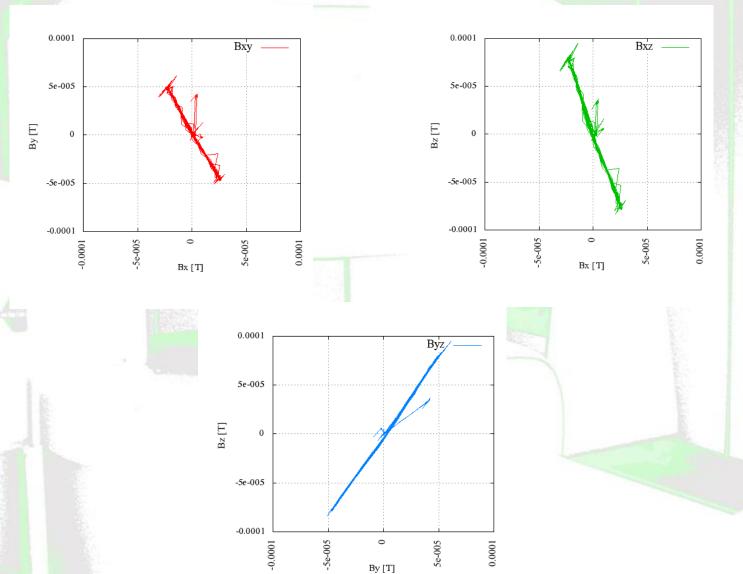
Gradienti



Gradienti

- Campo impresso OMOGENEO con andamento temporale pari a quello misurato.
- 10 sequenze realistiche misurate in tre distinte campagne :
 - Fatebenefratelli 25-07-2009
 - Santa Lucia 6-11-2009
 - Palidoro 29-01-2010
- Per 3 sequenze (una per campagna) presentazione approfondita risultati basata su modello VHP con risoluzione 3mm. Presentazione risultati in forma grafica e tabulare nei capitoli 8,9 10.
 - J Linee Guida ICNIRP 1998
 - E Bozze Linee Guida ICNIRP 2009
- Per tutte le 10 sequenze verifica dei soli limiti sulla densità di corrente indotta (ICNIRP 1998), impiegando modelli di organismo ITIS con risoluzione minore (pari a 5mm). Presentazione risultati in forma tabulare nel capitolo 11.

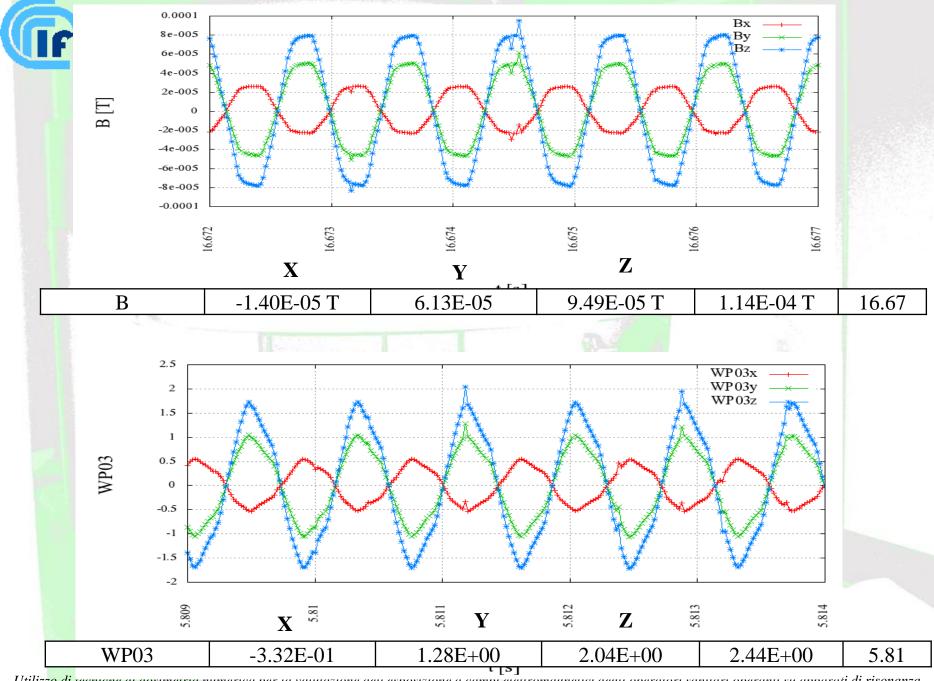
B(t), 25-07-2009 (cap.8)



La sequenza considerata per le analisi dosimetriche è quella denominata X1 e si tratta di una sequenza EPI Assiale con 21 fette di 0,5 mm ed un ciclo ripetuto di continuo.

Polarizzazione B

25-07-2009

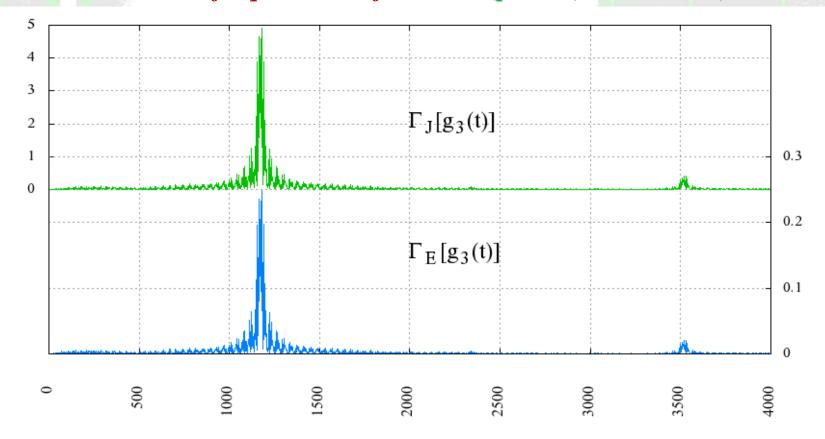

Fatebenefratelli 25-07-2009

	X		Y	\mathbf{Z}			Modulo		
	ampiezza	t [s]	ampiezza	t [s]	ampiezza	t[s]	ampiezza	t[s]	
В	3.35E-05 T	3.67	6.15E-05 T	13.24	9.49E-05 T	16.67	1.14E-04 T	16.67	
WP03	7.30E-01	2.81	1.29E+00	10.38	2.04E+00	5.81	2.44E+00	5.81	
WP09	2.13E-01	0.97	3.86E-01	10.38	6.05E-01	10.38	7.24E-01	10.38	
$\Gamma_{J}\{g(t)\}$	1.34E+01	2.81	2.37E+01	5.81	3.77E+01	5.81	4.49E+01	5.81	
$\Gamma_{\rm E}\{g(t)\}$	6.65E-01	2.81	1.18E+00	5.81	1.88E+00	5.81	2.24E+00	5.81	

Tabella 2: valori massimi delle forme d'onda (seq. x1, 25-07-2009).

	X	Y	Z	RSS	
	ampiezza	ampiezza	ampiezza	ampiezza	t [s]
В	-1.40E-05 T	6.13E-05	9.49E-05 T	1.14E-04 T	16.67
WP03	-3.32E-01	1.28E+00	2.04E+00	2.44E+00	5.81
WP09	9.35E-02	-3.86E-01	-6.05E-01	7.24E-01	10.38
$\Gamma_{\rm J}\{{ m g}({ m t})\}$	-5.91E+00	2.37E+01	3.77E+01	4.49E+01	5.81
$\Gamma_{\rm E}\{g(t)\}$	-2.93E-01	1.18E+00	1.88E+00	2.24E+00	5.81

Tabella 3: valori delle forme d'onda nell'istante in cui si verifica il massimo della somma RSS (seq. x1, 25-07-2009).



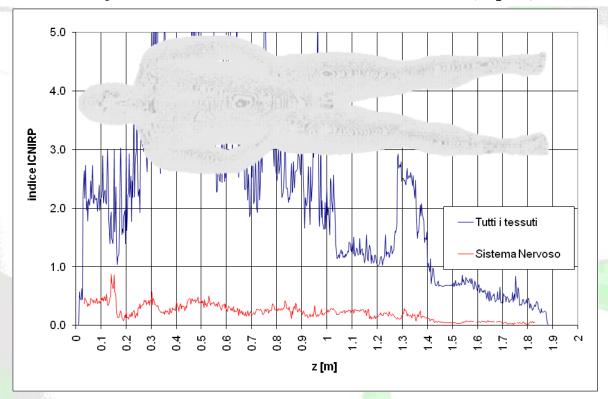
Utilizzo di tecnicne ai aosimetria numerica per la valutazione aeti esposizione a campi elettromagnetici aegii operatori sanuari operanti su apparati di risonanza magnetica (inclusa la pratica interventistica), nel quadro delle disposizioni della direttiva 2004/40/CE

Frequenza di riferimento

Per attribuire un valore alla conducibilità ai tessuti, è necessario fissare una frequenza di riferimento (par 4.3, 5.3.2 e 5.4.4).

f [Hz]	X	Y	Z	RSS
1182.5	1.517	3.035	4.926	5.982
3527.5	0.131	0.249	0.399	0.489

f[Hz]


	f [Hz]	X	Y	Z	RSS
	1182.5	0.077	0.153	0.249	0.302
ĺ	3527.5	0.007	0.012	0.020	0.024

25-07-2009, ICNIRP 1998, WPJ

Tessuto	MINIMO	MASSIMO	MEDIA	MEDIANA	1%-ile	99%-ile
Materia grigia cerebrale	0.000	0.529	0.138	0.129	0.020	0.335
Materia bianca cerebrale	0.001	0.313	0.095	0.091	0.011	0.222
Cervelletto	0.005	0.867	0.165	0.137	0.025	0.568
Nervi	0.001	0.574	0.115	0.098	0.017	0.359

Tabella 7: indice WPJ riferito alla densità di corrente mediata su 1 cm² (seq. x1, 25-07-2009)

Pg. 25

Figura 14: valore massimo sulle sezioni assiali dell'indice WPJ (seq. x1, 25-07-2009)

25-07-2009, ICNIRP 2009, WPE

Tessuto	MINIMO	MASSIMO	MEDIA	MEDIANA	1%-ile	99%-ile
Materia grigia cerebrale	0.000	0.188	0.058	0.055	0.010	0.136
Materia bianca cerebrale	0.000	0.179	0.064	0.064	0.008	0.133
Cervelletto	0.000	0.340	0.066	0.053	0.010	0.228
Nervi	0.000	0.519	0.095	0.075	0.013	0.303

Tabella 9: indice *WPE* riferito alla media volumetrica del modulo di wpe (approccio 1, par. 5.4.1, seq. x1, 25-07-2009)

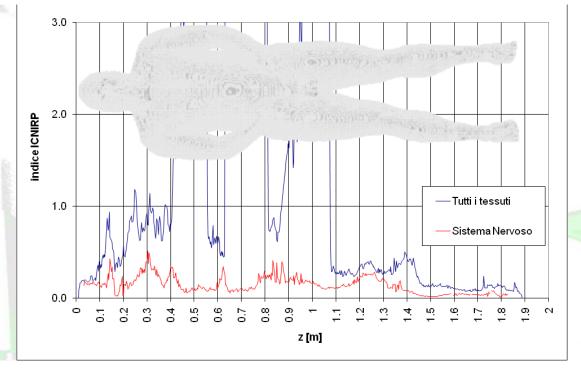


Figura 18: valore massimo sulle sezioni assiali dell'indice WPE (approccio 1, par. 5.4.1, seq. x1, 25-07-2009).

Cap 11 Tabella 30: massimo dell'indice WPJ su modello di organismo maschile con risoluzione a 5 mm

Pg. 45

campagna		2009-07	7-25_fbf		2009-11	1-06_fsl		2010-01	-29_pld	
nome sequenza	x1	x2	x3	x4	x8y8z8	x9y9z9	x1y1z1	x2y2z2	x3y3z3	x4y4z4
frequenza [Hz]	1182	1172	1172	1172	785	400	462	722	635	642
WP03	2.436	2.407	1.125	1.260	0.039	0.017	0.906	1.575	1.555	1.454
Tessuto					V	/PJ				
Sangue	2.957	2.952	0.621	1.641	0.02	0.012	1.224	0.745	1.698	0.736
Vasi	1.574	1.574	0.497	0.899	0.007	0.009	0.819	0.418	1.19	0.17
Materia grigia cerebrale	1.244	1.2	0.507	0.551	0.016	0.008	0.408	0.666	0.673	0.655
Materia bianca cerebrale	1.032	1.01	0.459	0.523	0.013	0.007	0.392	0.565	0.618	0.535
Cervelletto	0.761	0.749	0.341	0.38	0.01	0.004	0.218	0.435	0.386	0.442
Liquor	1.456	1.425	0.656	0.703	0.017	0.008	0.46	0.819	0.83	0.847
Muscolo	2.616	2.615	0.942	1.461	0.027	0.014	1.051	1.116	1.532	0.813
Nervi	0.603	0.592	0.267	0.301	0.009	0.004	0.193	0.361	0.318	0.346
Midollo spinale	0.708	0.69	0.216	0.342	0.008	0.003	0.18	0.293	0.269	0.288
Commissura anteriore	0.039	0.037	0.012	0.015	0	0	0.003	0.014	0.017	0.022
Ippocampo	0.264	0.26	0.12	0.135	0.004	0.002	0.131	0.138	0.203	0.107
Medulla oblongata	0.515	0.509	0.153	0.261	0.005	0.002	0.101	0.191	0.201	0.212
Mesencefalo	0.283	0.276	0.143	0.138	0.004	0.002	0.1	0.17	0.206	0.136
Ponte	0.499	0.494	0.149	0.265	0.006	0.002	0.179	0.195	0.239	0.188
Talamo	0.332	0.323	0.086	0.154	0.003	0.001	0.057	0.113	0.112	0.143

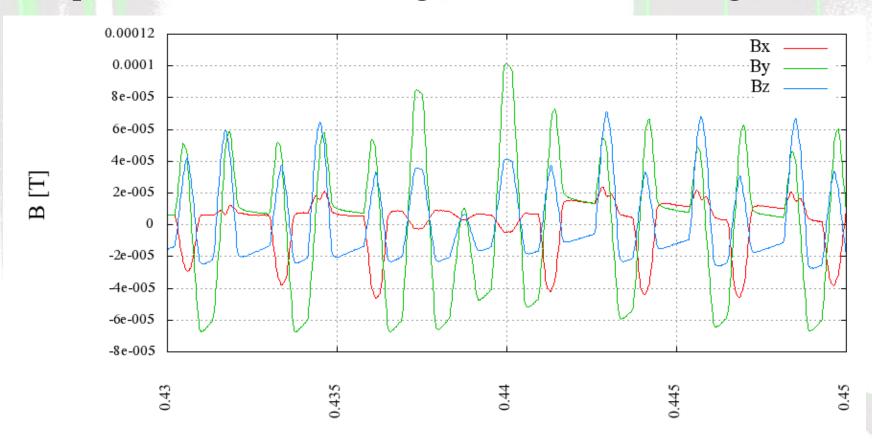
Cap 11 Tabella 31: massimo dell'indice WPJ su modello di organismo femminile con risoluzione a 5 mm

Pg. 46

campagna		2009-07	7-25_fbf		2009-11	1-06_fsl		2010-01	-29_pld	
nome sequenza	x1	x2	x3	x4	x8y8z8	x9y9z9	x1y1z1	x2y2z2	x3y3z3	x4y4z4
frequenza [Hz]	1182	1172	1172	1172	785	400	462	722	635	642
WP03	2.436	2.407	1.125	1.260	0.039	0.017	0.906	1.575	1.555	1.454
Tessuto					V	/PJ				
Sangue	1.103	1.093	0.48	0.577	0.014	0.007	0.343	0.573	0.656	0.509
Vasi	0.473	0.473	0.172	0.273	0.003	0.003	0.26	0.152	0.387	0.088
Materia Grigia Cerebrale	1.268	1.248	0.647	0.63	0.02	0.009	0.586	0.844	0.979	0.779
Materia Bianca Cerebrale	0.906	0.89	0.452	0.422	0.015	0.006	0.298	0.615	0.494	0.607
Cartillagine	0.89	0.862	0.342	0.404	0.011	0.005	0.283	0.436	0.392	0.408
Cervelletto	0.727	0.72	0.262	0.377	0.007	0.003	0.227	0.324	0.327	0.383
Liquor	1.727	1.669	0.762	0.771	0.024	0.011	0.598	1.01	1.031	0.981
Muscolo	1.901	1.883	0.794	1.017	0.023	0.012	0.834	0.926	1.258	0.625
Nervi	0.639	0.622	0.134	0.299	0.004	0.002	0.104	0.196	0.127	0.274
Midollo spinale	1.758	1.699	0.34	0.787	0.008	0.006	0.377	0.452	0.6	0.746
Commissura anteriore	0.021	0.019	0.017	0.005	0	0	0.011	0.019	0.029	0.022
Ippocampo	0.214	0.211	0.07	0.11	0.002	0.001	0.073	0.088	0.098	0.073
Medulla Oblongata	0.745	0.724	0.262	0.352	0.006	0.002	0.165	0.321	0.329	0.367
Mesencefalo	0.492	0.479	0.162	0.228	0.005	0.002	0.15	0.216	0.222	0.242
Ponte	0.492	0.485	0.221	0.256	0.005	0.003	0.193	0.261	0.322	0.219
Talamo	0.584	0.57	0.158	0.274	0.005	0.002	0.104	0.215	0.138	0.271

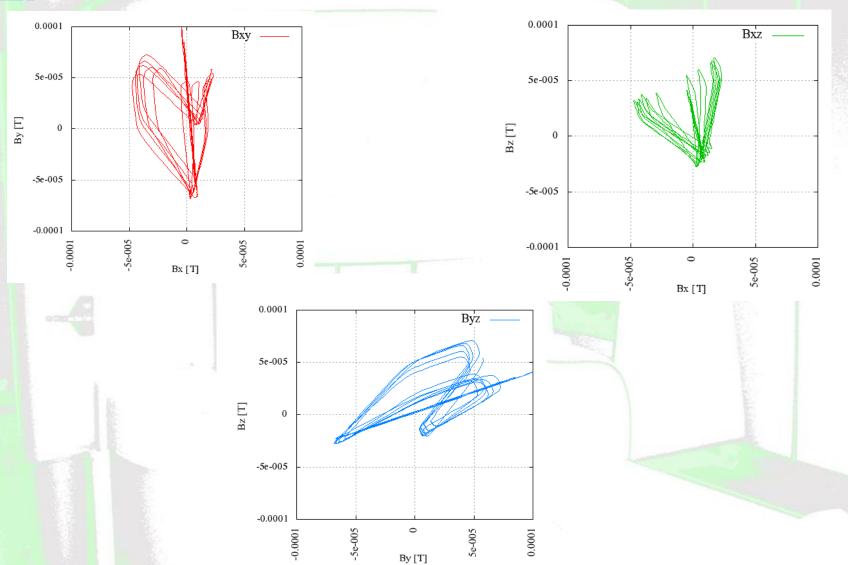
Riassunto gradienti

Il caso in cui si raggiungono i maggiori livelli di esposizione è quello presentato nel capitolo 8 (sequenza x1, fatebenefratelli, 25-07-2009) per il quale sono stati rilevati livelli di esposizione pari a quasi il 250% dei livelli di riferimento delle linee guida ICNIRP del 1998 e pari a circa il 72% delle bozze del 2009.

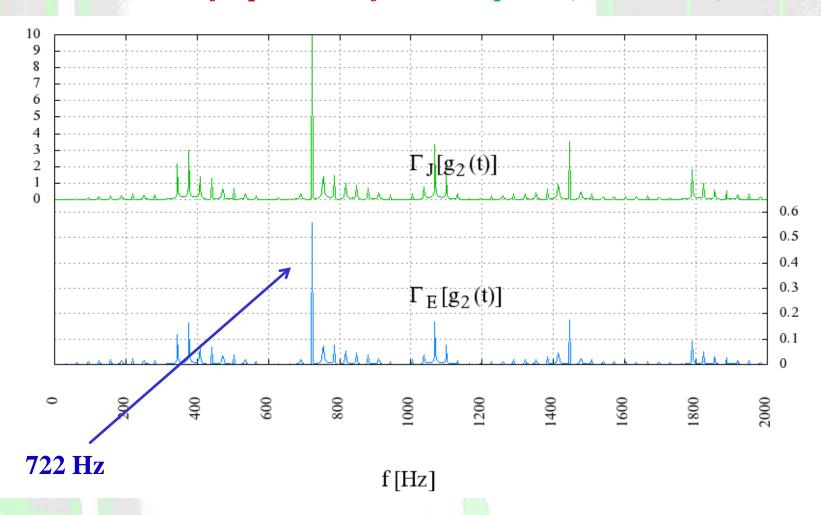

	Uomo 3mm	Uomo 5mm	Donna 5mm
WPJ	87%	124%	176% (*)
WPE	52% (34% **)		

- (*) raggiunto nel midollo spinale composto con solo 149 celle
- (**) 34% nel midollo spinale 52% nei nervi periferici

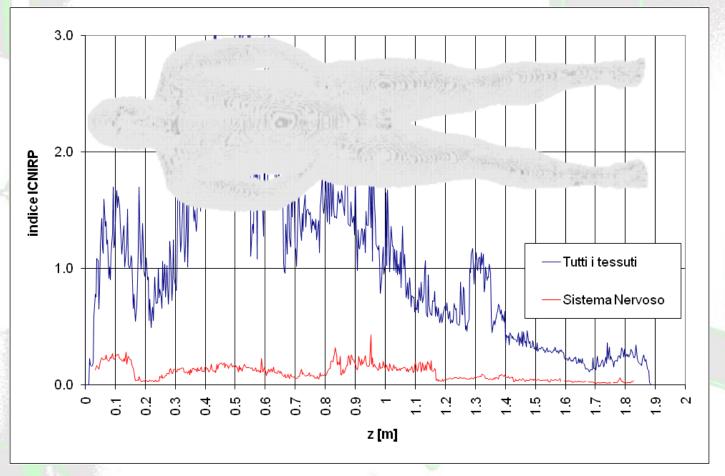
B(t), 29-01-2010 (cap.10)


È il caso più significativo per quanto riguarda l'esposizione del personale durante lo svolgimento dell'esame diagnostico.

Polarizzazione B


29-01-2010

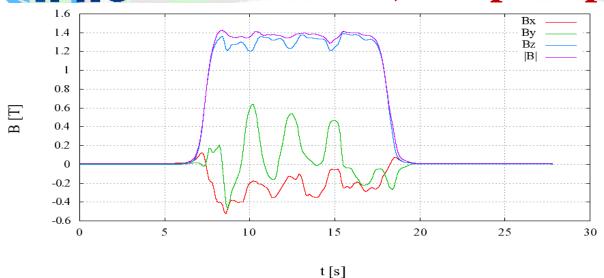
Frequenza di riferimento


Per attribuire un valore alla conducibilità ai tessuti, è necessario fissare una frequenza di riferimento (par 4.3, 5.3.2 e 5.4.4).

29-01-2010, ICNIRP 1998, WPJ

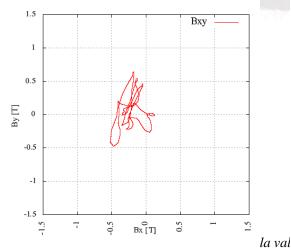
Tessuto	MINIMO	MASSIMO	MEDIA	MEDIANA	1%-ile	99%-ile
Materia grigia cerebrale	0.000	0.281	0.076	0.070	0.009	0.192
Materia bianca cerebrale	0.000	0.198	0.051	0.047	0.007	0.128
Cervelletto	0.020	0.245	0.067	0.061	0.029	0.171
Nervi	0.000	0.430	0.048	0.038	0.006	0.167

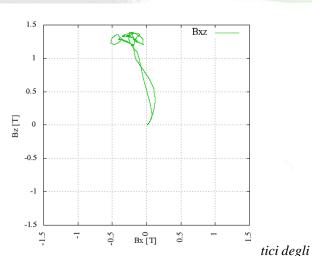
Campo statico

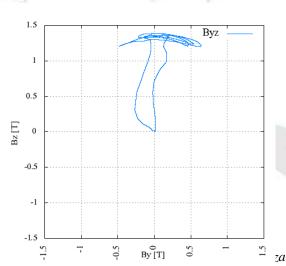


Campo statico

- Campo impresso OMOGENEO con andamento temporale pari a quello "percepito", misurato con sensore metrolab montato su caschetto di operatore in movimento.
- 8 andamenti del campo percepito misurati nella campagna del 15-01-2010 presso l'ospedale "Bambin Gesù" di Palidoro.
 - 5 andamenti (walk1 .. walk5) relativi al movimento di un tecnico adibito alla preparazione del paziente.
 - 3 andamenti (anes1.. anes3) relativi alle pratiche eseguite da anestesisti.
- Sono state considerate le due sequenze che danno luogo ai maggiori indici di esposizione all'interno di ciascun gruppo cioè anes3 (par 16.1) e walk5 (par. 16.2).
- Sono stati calcolati solo gli indici WPJ relativi alla densità di corrente (linee guida ICNIRP 1998) utilizzando i modelli di uomo a 3mm e 5mm e quello di donna a 5mm.



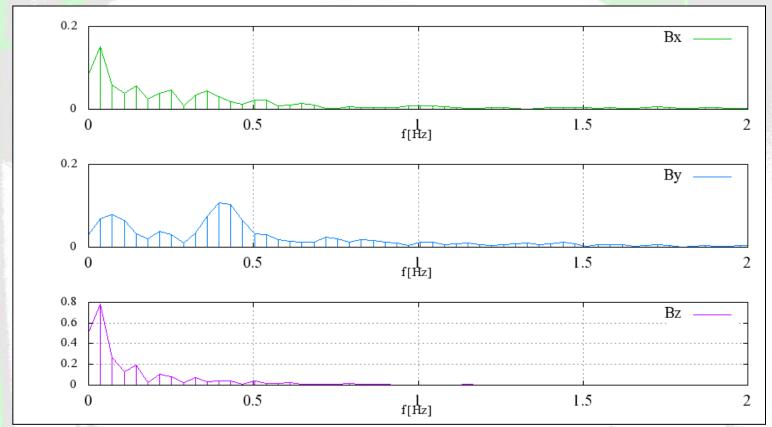
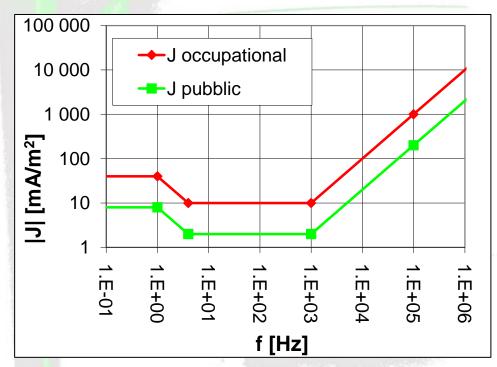

Anes3, campo B percepito

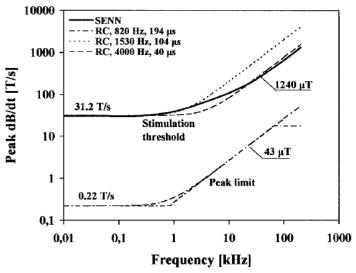


L'anestesista entra nella sala magnete, si sposta dietro al *gantry* passando sulla sinistra del *gantry* stesso, compie vari movimenti presso l'imboccatura posteriore del *bore* (indietreggia, si china varie volte, inserisce per 3 s la testa all'interno del bore), quindi esce dalla sala magnete.

ugnenca (inciusa la pranca intervenisiwa), nei quaaro aene aisposizioni delle

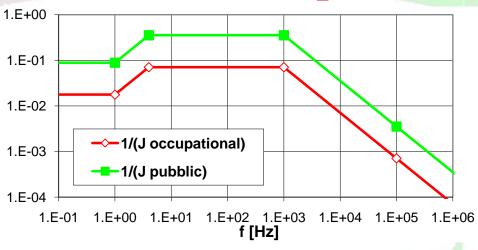
Anes3, scelta della frequenza di rif.

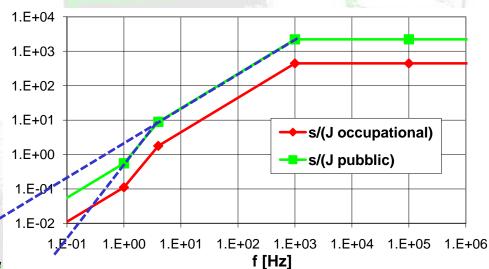

Figura 55: spettri delle componenti cartesiane dell'induzione magnetica (anes3).

Poiché il contenuto spettrale del campo magnetico percepito è concentrato entro pochi hertz, si è scelto di utilizzare le conducibilità calcolate a 10 Hz, che è la più bassa frequenza coperta dal modello parametrico di C.Gabriel

Statement ICNIRP 2003


Fig. 3. Stimulation threshold and peak limit for a sinusoidal magnetic field as a function of frequency (Jokela 2000). The solid curve shows the stimulation threshold calculated with the SENN (spatially extended nonlinear nodal) model of Reilly (1998). The lower curve is the peak limit for occupational exposures.

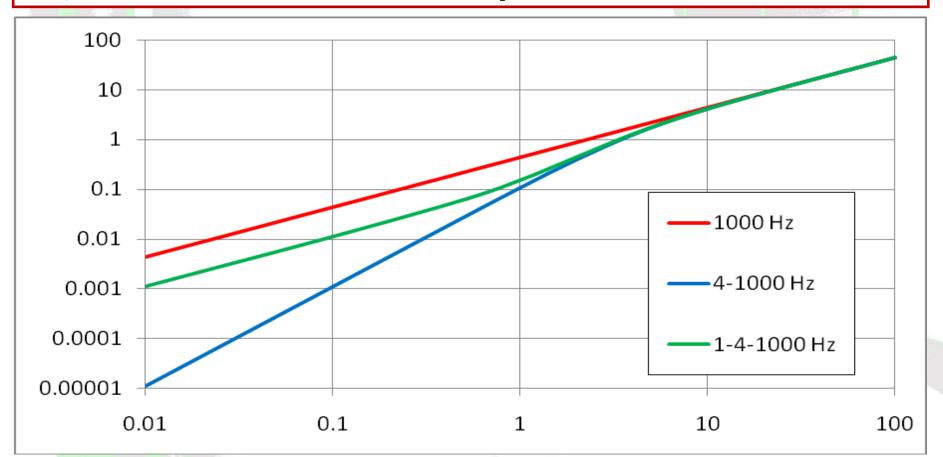
Nello statement ICNIRP del 2003 si prende in considerazione il solo polo a 820 Hz e non si specifica come comportarsi nel caso di forme d'onda a bassissima frequenza.


In particolare le restrizioni di base per la densità di corrente sono caratterizzate da ginocchi a 1 Hz e a 4 Hz che, se considerati, influiscono sensibilmente sui risultati dell'applicazione dell'approccio WP a forme d'onda come quelle del campo percepito da operatori in movimento nella sala magnete.

Funzioni peso WF

$$\left|\sum_{i} (WF)_{i} A_{i} \cos(2\pi f_{i} t + \theta_{i} + \varphi_{i})\right| \leq 1,$$

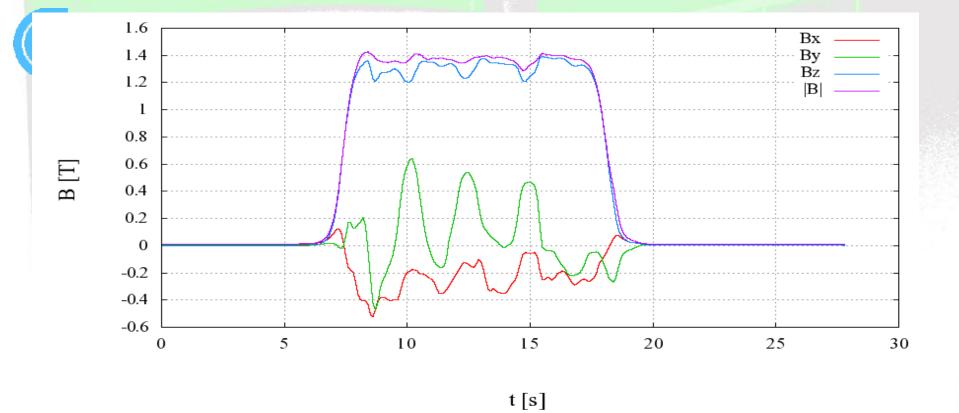
Utilizzo di tecniche di dosimetria


anitari operanti su apparati di risonanza

Approccio WP a bassissima frequenza

In Figura 56 sono rappresentate le risposte in ampiezza dei filtri usati per l'elaborazione delle forme d'onda delle componenti cartesiane dell'induzione magnetica nel caso si consideri solo una frequenza caratteristica (1000 Hz, in rosso), nel caso si tenga conto di due frequenze caratteristiche (4 e 1000 Hz, in blu) oppure di tre (1, 4 e 1000 Hz, in verde).

Come si può notare in figura il *peso* attribuito alle componenti spettrali di forme d'onda a frequenze molto basse, differisce notevolmente in funzione del numero di frequenze caratteristiche considerate.


Figura 56: Risposta in frequenza dei filtri che rappresentano la derivazione e l'applicazione dei funzionali Γ_J alle forme d'onda delle componenti cartesiane dell'induzione magnetica.

Approccio WP a bassissima frequenza

	Frequenze caratteristiche	X	y	Z	RSS	t
B		-0.425	-0.017	1.363	1.428	8.39
$\Gamma_J \{g(t)\}$	1000	-75.879	-157.652	39.224	179.305	15.37
$\Gamma_J^{**}\{g(t)\}$	1 - 4 -1000	-32.643	-61.786	15.658	71.612	15.33
$\Gamma_J^*\{g(t)\}$	4 - 1000	18.416	41.531	-9.122	46.337	15.50

Indice	corner freq.	RSS	t
В		1.428	8.39
WP03occ	820	11.336	15.37
WP03occ**	1 - 8 - 820	6.135	15.32
WP03occ*	8 - 820	1.666	15.48
$\Gamma_{\rm I}\{{\rm g}({\rm t})\}$	1000	179.305	15.37
$\Gamma_{I}^{**}\{g(t)\}$	1 - 4 -1000	71.612	15.33
$\Gamma_{\mathbf{I}}^* \{ \mathbf{g}(\mathbf{t}) \}$	4 - 1000	46.337	15.50

Anes3, WPJ, uomo 3mm

Tessuto	MINIMO	MASSIMO	MEDIA	MEDIANA	1%-ile	99%-ile
Materia grigia cerebrale	0.000	0.496	0.084	0.073	0.008	0.266
Materia bianca cerebrale	0.001	0.307	0.066	0.060	0.007	0.191
Cervelletto	0.008	0.384	0.100	0.089	0.026	0.272
Nervi	0.003	0.674	0.104	0.084	0.015	0.418

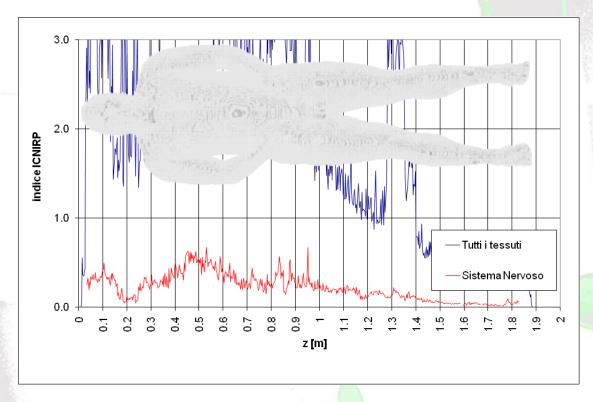
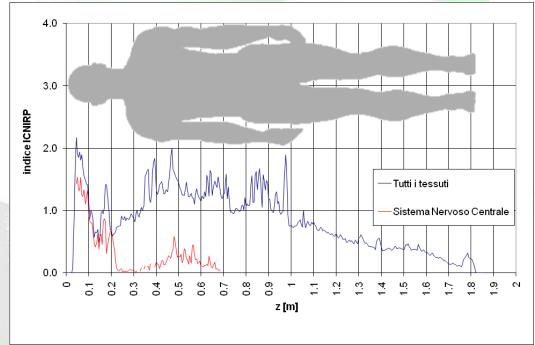



Figura 57: valore massimo dell'indice WPJ sulle sezioni assiali del modello di uomo con risoluzione a 3 mm (anes3)

Anes3, WPJ, uomo 5mm

Tessuto	MINIMO	MASSIMO	MEDIA	MEDIANA	1%-ile	99%-ile
Materia grigia cerebrale	0.002	1.532	0.159	0.091	0.012	1.067
Materia bianca cerebrale	0.002	1.358	0.084	0.058	0.007	0.660
Cervelletto	0.010	0.872	0.142	0.103	0.033	0.645
Midollo spinale	0.004	0.691	0.124	0.099	0.011	0.547
Commissura anteriore	0.025	0.025	0.025	0.025	0.025	0.025
Ippocampo	0.016	0.167	0.058	0.048	0.016	0.167
Medulla oblongata	0.020	0.667	0.216	0.153	0.020	0.667
Mesencefalo	0.003	0.298	0.074	0.040	0.004	0.276
Ponte	0.006	0.641	0.122	0.041	0.007	0.622
Talamo	0.019	0.365	0.174	0.165	0.019	0.365

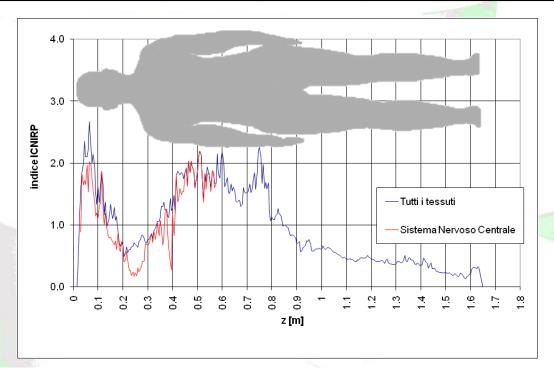
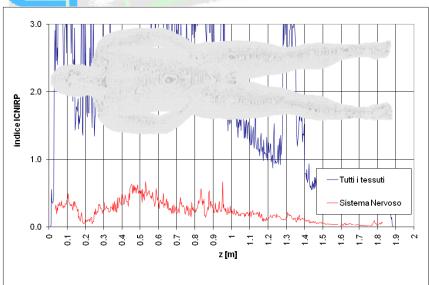
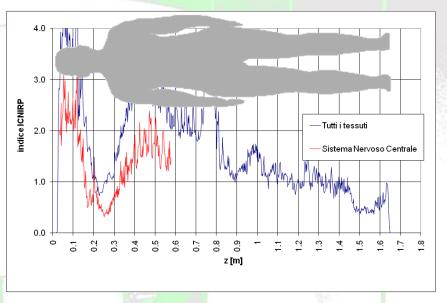

Utilizzo di tecniche di d

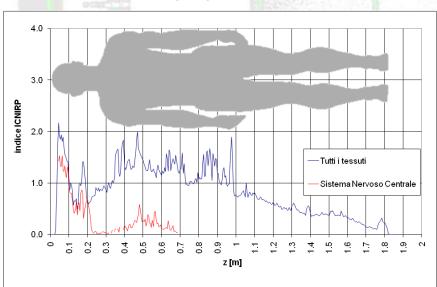
Figura 58: valore massimo dell'indice *WPJ* sulle sezioni assiali del modello di uomo con risoluzione a 5 mm (anes3)

Anes3, WPJ, donna 5mm

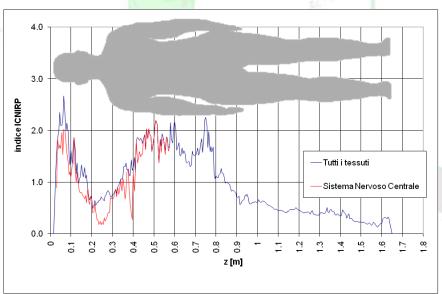
Tessuto	MINIMO	MASSIMO	MEDIA	MEDIANA	1%-ile	99%-ile
Materia grigia cerebrale	0.001	2.020	0.209	0.099	0.013	1.264
Materia bianca cerebrale	0.002	1.558	0.083	0.061	0.009	0.545
Cervelletto	0.030	0.934	0.169	0.124	0.067	0.780
Midollo spinale	0.032	2.195	0.775	0.617	0.033	2.124
Commissura anteriore	0.015	0.015	0.015	0.015	0.015	0.015
Ippocampo	0.040	0.114	0.078	0.072	0.040	0.114
Medulla oblongata	0.035	0.880	0.372	0.324	0.035	0.880
Mesencefalo	0.001	0.695	0.133	0.056	0.001	0.695
Ponte	0.015	0.599	0.132	0.078	0.015	0.599
Talamo	0.004	0.906	0.119	0.047	0.005	0.747




Figura 59: valore massimo dell'indice *WPJ* sulle sezioni assiali del modello di donna con risoluzione a 5 mm (anes3) *magnetica (inclusa la pratica interventistica), nel quadro delle disposizioni della direttiva 2004/40/CE*


Ugo 3 mm

Ella 2 mm



Duke 5 mm

Ella 5 mm

Utilizzo di tecniche di dosimetria numerica per la valutazione dell'esposizione a campi elettromagnetici degli operatori sanitari operanti su apparati di risonanza magnetica (inclusa la pratica interventistica), nel quadro delle disposizioni della direttiva 2004/40/CE

Riassunto campo statico

Le analisi dosimetriche hanno riguardato i soli limiti di base definiti nelle linee guida ICNIRP del 1998 per la densità di corrente. Il caso che dà luogo agli indici di esposizione più alti è quello denominato anes3, approfondito nel paragrafo 16.1, che si riferisce all'esposizione di un anestesista per il quale sono stati calcolati degli indici di esposizione pari a circa il 68% dei limiti di base nel caso del modello di uomo con celle di 3 mm, al 153% nel caso di modello di organismo di uomo con risoluzione a 5mm, e pari ad oltre il 200% nel caso della donna con celle di 5 mm.

	Uomo 3mm	Uomo 5mm	Donna 5mm
WPJ	68%	153% (**)	219% (*)
WPE			

- (*) raggiunto nel midollo spinale rappresentato da solo 149 celle
- (**) raggiunto nella materia grigia cerebrale rappresentato da oltre 4800 celle

Possibili estensioni del lavoro

In generale:

- Modelli a maggiore risoluzione (2mm)
- Nuove linee guida

Gradienti:

 Modellazione disomogeneità spaziale campi di a partire da misure (estensione del metodo dosimetrico)

Campo statico:

- Valutazioni sul campo statico basate su misure a maggior risoluzione temporale.
- Considerare un apparato a 3 tesla.
- Nuovo metodo (acquisizione movimento
 - + ricostruzione campo)?

Cosa cambia con le nuove linee guida

- L'approccio WP è pienamente integrato nelle linee guida.
- Il campo di applicazione delle linee guida riguarda frequenze comprese tra 1 Hz e 10 MHz e gli effetti del movimento in una distribuzione non omogenea di campo statico sono esplicitamente esclusi (e rimandati ad una successiva pubblicazione).
- La grandezza dosimetrica di base è il campo elettrico interno e non la densità di corrente.
- Molte delle ambiguità e dei problemi legati alla prescrizione di effettuare una media spaziale della grandezza dosimetrica di base sono risolti alla base.
- La grandezza da confrontare con i limiti è il 99-esimo percentile della grandezza di base mediata nello spazio.
- Esistono due tipologie di limiti di base, che devono essere rispettati:
 - quelli che si applicano alla sola testa e ai soli tessuti del sistema nervoso centrale (più cautelativi, proteggono dalla stimolazione del sistema nervoso centrale);
 - quelli che si applicano a tutte le parti del corpo e a tutti i tessuti (meno cautelativi, proteggono dalla stimolazione nervosa periferica).