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r
The assessment process involves tw@/dﬁinct phases:
|(l)measurement of the fields generated by the MR scanner and |
(2)numerical calculation of the dosimetric quantities induced by the fields in a
human body represented with a proper digital model.

i. Movement in a static field distribution.

| ii. Exposure to the magnetic field generated by gradient coils |

11 _Expnosnre to RFE fieldg

In this presentation:

* basics of the dosimetric method (in time domain) used to calculate the physical
quantities (and the related exposure indexes) induced in a worker exposed to magnetic
fields generated by MRI gradient coils

* some examples of application, focusing on the comparison of ICNIRP 1998 — ICNIRP
2010 exposure standards e




Desired characteristics of the dosimetric

method
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Focusing the attention on the time evolutlon of the exposures and

not to the space dlstrlbutlon of the f|eId
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irncWeighted peak dosimetry at low frequencies!((irac
B(r,?) (linear polarization)

Separation space-time dependence

(*1) —— BM-f(©) .

Solution of one or more quasi quasi-static conditions
+

Faraday law

static, space-dependent
dosimetric problems

E(r) J(r,0)=J(r)- g(t) AO_
Jr) | E(r,0)=E(r)- g(1) dt

Application of
surface/volume average +

Series of first order filters that
represent the inverse of ICNIRP

RSS Guidelines for J and Ein-situ
() _ Tplg®)
_ WPJ(r.0)=[3(r)| T, {g (1)}
) " [pPE®.) = [B0) - Tele ) Lig)
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B spatial distribution

« If both the shapes of the three gradient coils and the currents
flowing into them were known, the general problem could be separated
into three linearly polarized field problems (one per coil).

B(l‘,f) = BXcoil (l‘,t) + BYcoil (l‘,t) + BZcoil (l',f)

B yeoit (0:0) = fxcoir (£)- B xoi (1)
WP B it (1.8 = Freoin(t) Byegi(r)
B it (1) = f 7001 (£) B e (1)
\ “time-shape” of coil current

+ Since it is not easy to obtain such data from MRI manufacturers, the
spatial distribution was simplified by adopting a homogeneous
worst-case approach. In particular, the magnetic flux density vs. time
was measured in a selected point for each exposure scenario; this is the
point closest to the bore where a worker may have to stay during a scan.
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Homogeneous B field,
general polarization
B(r,)=B(t)=%B,(t)+ 7B, (¢)+ 2B.(t)

Not parallel to x

8,1 &)

o)~ B 1 B0 B0

dr * dt

WPI(r,t) = [WPT  (e.)F + [P, (.0 )f + PP, (et | €2
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Measured gradient sequencies

sequence IB| [T] WP0.3 WP03. WP1.0 Wqu
occupational |population| occupational | population

2009-07-25_x1 1.14E-04 2.436 12.013 0.415 1.570
2009-07-25_x2 1.10E-04 2.407 11.871 0.409 1.549
2009-07-25_x3 6.53E-05 1.125 5.555 0.210 0.786
2009-07-25_x4 1.02E-04 1.260 6.231 0.234 0.902
2009-11-06_x8y8z8 |3-31E-06 0.039 0.194 0.006 0.025
2009-11-06_x9y9z9 | 1.10E-06 0.017 0.085 0.003 0.013
2010-01-29 x1ylz1 |6.40E-05 0.906 4.499 0.143 0.570
2010-01-29_x2y2z2 | 1.10E-04 1.575 7.849 0.212 0.860
2010-01-29 x3y3z3 |1.18E-04 1.555 7.720 0.235 0.915
2010-01-29 x4y4z4 |1.13E-04 1.454 7.263 0.191 0.789
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[ Baet Man (VHP) 3mm

WPE iFnc

s | ) High WPE indexes in dry skin are

ot _ M9YeT " present also in IT'IS body models but
armpit are less evident, especially in 99

percentiles (graphs referto maximum
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values). This can be due to lower
resolution and different anatomy (better
refinement, for example arm-trunk
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IFAC IFAC
WPO03 WP10
sequence IBI IT] occupational | occupational
2009-07-25_x1 1.14E-04 244 % [42 %|
WPJ CNS | WPE CNS head PE PNS
occupational | occupational | ocgupational
Man (VHP) 3mm 77% 10% | 532%3] (31%)
Man (IT’IS) 5mm 124% 10% 34% (29%)
Woman (IT’IS) 5mm 176% 9% _ 28% L18%)
99 %ile
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sequence IB| [T] WPo3 WP10
q occupational | occupational
2010-01-29 x2y2z2 1.10E-04 158 % | 21 °A

1

WPJCNS | WPECNS head| WPE PNS
occupational | occupational | ocqupational

Man (VHP) 3mm 28% 4% 218%(13%)
Man (IT’IS) 5mm 67% 5% 15% (12%)
Woman (IT’IS) 5mm 84% 5% 11% (9%)
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Conclusions

* A method has been presented that applies the WP approach to
the calculation of basic dosimetric quantities, that aims at the
calculation of two exposure indexes called WPJ (ICNIRP1998) and
WPE (ICNIRP2010).

* The presented method has been applied to the case of the
magnetic field generated by MRI gradient coils. That kind of
exposure can, in some case, be critical in terms of BR compliance.

* A possible problem in terms of respect of 2010 Guidelines
rationale has been evidenced, that refers to low conductivity
peripheral tissues (dry skin). This problem has to be investigated
moving towards higher resolution body models.

* The comparison shows that with the new Guidelines is necessary
to put great attention in the choice of the digital body models
that need to be accurate and refined since the new ICNIRP basic
restrictions apply to all tissues.
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Grazie per |'attenzione

Thank you for your attention
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Non-Homogeneous B field,
general polarization

+ If both the shape of the three gradient coils and the
currents flowing into them were known, the general
problem could be divided into three linearly polarized field
problems (one per coil)

» An extension of the presented method was developed that
allows to calculate the WPJ and WPE indexes starting
from B field measurements, moving the same instrument
in a set of fixed points disposed in convenient way. This
extension entails:

+ the interpolation of the spatial field (and the vector
potential) distribution from measured values;

* some approximations to synchronize the measured B
field frames in time.
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irncWeighted peak dosimetry at low frequencies((irac
B(r,?) (linear polarization)

Separation space-time dependence

B(r)-

The conductivity is known as a ( ) f(t) v
function of frequency!! We need
to chose a reference frequency to

assign conductivities to tissues

(*1)

J(r,t)=J(r)- g() af @) _
. g
J(r) E(r,1) = E(r)- g(t) dt

Application of
surface/volume average +

RSS
m — Ly {g (¢ )}
_ WPJ(x,) =[3(r)]- T, {g(0)}
‘E(r)‘ WPE(r,t) = ‘ﬁ‘ Tp{g() T, {g(0)}
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I“r’i‘l) the choice of the reference frequency'mc

« the instant t* is considered when the RSS of the three
indexes I ., £{g;(t)} reaches its maximum

\/FJorE @O+, 218 OF + T plg; OF

+ The DFT of the three indexes I, £{g;(t)} is calculated on a
time frame centered in t* with a time length suitable to
obtain a sufficient spectral resolution (0.5s -> 2Hz in the
presented cases)

» For each frequency of the spectrum the RSS of the
spectral row of the three indexes I, g{g;(t)} is calculated.

» The frequency for which the maximum of the previously
cited quantity holds is adopted as reference frequency.
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'"19‘1) the choice of the reference frequency'mc

WPJ WPE
| o=
- I ,/'F
Ses—— =

1530
[GH]

WRI(f) / WPI(50H:)

WPE*(f) / WPE*(50Hz]  (* max)
K\

f[Hz]

cOCOLON
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s Homogeneous B field, ng'm
et general polarization
B(r,)=B(t)=%B,(t)+ 7B, (¢)+ 2B.(t)
Some difficoulties arise to find the time instant when this quantity reaches its
maximum (*2)
[ e
IFAC

I""f*Z) Finding the time-maximum of WP indexes

Non-homogeneous B field with linear polarization

m?x {WPJ(r,t)} = |m| : m?X{rJ {g(t)}}

max (FPE(r.1)} = ‘ﬁ‘ max{Ty {g()])

Homogeneous B field with generic polarization

max WP (r,)f # i (F)max T {gy (O)f} + o (r)max{T gy 1))+ s (r)max (T g3 (1))}
max PRIy (v,t)}# i, (e)max{T gy (1)) -+ oy (r)max T g (€)1} + i, (r)max{T g5 (1))}
max WP/ (r,1); 'F iz (e)maxil g (0} + o (r)max{T gy () + i (r)mgx {rg O
mtalx{WPJ(r, 1)} = mtax{\/ [WPT (e,0)F +[WPJy (v, 0)F + [WPT, (x,0 )} }: ? ?
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irnc  (*2) Finding the maximum in time of WP (lirac
indexes

Homogeneous B field with generic polarization

In a worst case perspective the time-maximum values of the quantities I" {g;(t)}
can be chosen, even if the three maximum are not simutaneous.

the instant t* is considered when the maximum of the RSS of the three indexes
I {g;(1)} holds

\/FJ {gl(t)}z +I; {gz(f)}z + T g (f)}2
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dB(t)/dt, E(t), J(t)
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Bx=254 uT, Sinusoidal f=1182Hz

Bx254uT@1182Hz WP10=1.0
MODEL | TESS N I-EV'\;InA:]( E[\Q/?:f]' lle (BR=V(\)/.F5;E/ -
ugo3mm [SkinDry 167810 5.40 1.00 1.25
ella5mm  SkinDry 25398 1.03 0.28 0.35
duke5mm [SkinDry 39449 1.52 0.36 0.45
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