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Abstract

Magnetic resonance electrical impedance tomography (MREIT) is to visualize
the current density and the conductivity distribution in an electrical object �

using the measured magnetic flux data by an MRI scanner. MREIT uses only
one component Bz of the magnetic flux density B = (Bx, By, Bz) generated
by an injected electrical current into the object. In this paper, we propose a
fast and direct non-iterative algorithm to reconstruct the internal conductivity
distribution in � with the measured Bz data. To develop the algorithm, we
investigate the relation between the projected current density JP , a uniquely
determined component of J by the map from current J to measured Bz data
and the isotropic conductivity. Three-dimensional numerical simulations and
phantom experiments are studied to show the feasibility of the proposed
method by comparing with those using the conventional iterative harmonic
Bz algorithm.

1. Introduction

The magnetic resonance current density imaging (MRCDI) technique has been proposed
(Eyuboglu et al 1999, Gamba et al 1999, Joy et al 1989, Joy 2004, 1991, Scott et al 1992)
by using a magnetic resonance imaging (MRI) scanner. The MRCDI measures the internal
magnetic flux density B = (Bx, By, Bz) generated by an externally injected electrical current
through the electrodes attached on the surface of an object �. Direct computations using
Ampère’s law J = ∇ × B/μ0, where μ0 is the magnetic permeability of the free space,
produce the internal current density J = (Jx, Jy, Jz) corresponding to the measured magnetic
flux density B.

Since an MRI scanner measures only one component Bz of the magnetic flux density
B = (Bx, By, Bz) where the main magnetic field direction is the z-direction, the imaging
object should be rotated to measure all three components of B in the MRCDI. Indeed, a human
body cannot be rotated in a conventional MRI scanner and even if it is possible, the rotation of
the object may cause artifacts by misalignments of pixels and movements of internal organs.
To overcome the rotating problem, it utilizes only one component Bz data to reconstruct the
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conductivity and the current density in the object � recently. But MREIT requires at least two
independent current injections to reconstruct the distinguishable conductivity distribution in
�.

Most algorithms in MREIT are usually designed to extract some useful electrical
information from the measured Bz data in the object � (Birgul et al 2006, Gao et al 2006,
Hamamura et al 2006, Ider et al 1998, Joy 2004, Kwon et al 2002, Muftuler et al 2004, Park
et al 2004b, Seo et al 2003).

Although imaging techniques in MREIT using Bz data have been rapidly developed
and are at the stage of animal experiments nowadays, for practical usages of MREIT, it is
important to develop a stable and fast algorithm to reconstruct the internal conductivity and
current density in �.

Recently, the relations of J and Bz were analyzed using the map T from the current density
vector field J to the measured Bz data in Park et al (2007). The projected current density JP is
provided by an orthogonal decomposition J = JP + JN , where JN belongs to the null space of
the map T , and JP is in the orthogonal complement of the null space. The projected current
density JP is recovered directly by solving a two-dimensional harmonic equation from the
measured Bz data.

To visualize the conductivity distribution using the measured Bz data, most developed
algorithms need to solve tedious and time-consuming three-dimensional elliptic equations
iteratively to update the conductivity because the conductivity and the current density
information is concealed in the measured Bz data.

In this paper, we propose a fast and direct algorithm to reconstruct an isotropic conductivity
distribution in � using the projected current JP with two independent injected currents. The
projected current JP consists of the background current J0 and the curl of a potential which
is a solution of a two-dimensional harmonic equation. By investigating relations between the
projected current JP and the conductivity distribution, the proposed algorithm directly extracts
the conductivity information from the measured Bz data, resulting in the reconstruction of the
internal conductivity in a real time with a background current.

The recovered conductivity image using the proposed method mainly depends how well
the projected current JP is recovered by the measured Bz data. The recovered projected
current JP is identical to the true current J when the z-component of Jz is similar to J 0

z ; J0 is
the background current, but there are some differences in a general three-dimensional current
case. This means that the recovered conductivity also includes some gap comparing with
the true conductivity for a general three-dimensional case. We also study about the stability
between the recovered conductivity using JP and the z-component Jz − J 0

z .
Three-dimensional numerical simulations were tested to validate the feasibility of the

proposed algorithm, where the conductivity was designed to generate a three-dimensional
current flow. To the case of the agarose gel phantom experiment, we compared the
reconstructed conductivities using the proposed algorithm and the conventional harmonic
Bz algorithm.

2. Theory

2.1. Projected current density JP of J

Let � be a three-dimensional, cylindrical and electrical conducting body with its boundary
∂�. This domain can be expressed as the union of slices which are perpendicular to the z-axis:

� =
⋃

t∈(−H,H)

�t , where �t = � ∩ {(x, y, z) ∈ R
3 | z = t}. (1)
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Let n = (n1, n2, n3) be the outward unit normal vector on ∂�. Electric current is injected in �

through a pair of surface electrodes attached on ∂�. The interior current density distribution
J = (Jx, Jy, Jz) influenced by an injected current satisfies

∇ · J = 0 in �
(2)

J · n = g on ∂�.

The concept of a projected current, JP , is introduced from the relations of J and measured
Bz data since MREIT only measures one component magnetic flux density Bz. The projected
current JP is uniquely determined by the measured Bz data; it can be expressed as J0 := ∇α

and J∗ := (
∂β

∂y
,− ∂β

∂x
, 0

)
, where α is a homogeneous voltage potential satisfying

∇2α = 0 in �
(3)

∇α · n = J · n on ∂� and
∫

∂�

α ds = 0,

and βt (x, y) := β(x, y, t) for t ∈ (−H,H) satisfies the following two-dimensional Laplace
equation for each slice �t ⊂ �:

∇̃2βt = 1

μ0
∇2Bz in �t

(4)
βt = 0 on ∂�t .

For convenience, we use the notations ∇ = (
∂
∂x

, ∂
∂y

, ∂
∂z

)
and ∇̃ = (

∂
∂x

, ∂
∂y

)
.

The recovered JP is identical to the true current J if the z-components of JP and J are
same. As a special case, if the current J is transversal, then the true current J is completely
recovered by solving (3) and (4). Although, for a general current J = (Js, Jy, Jz), there exists
some gap between the current J and the projected current JP , the difference stably depends
on Jz − J 0

z :

‖JP − J‖ � C

{∥∥J 0
z − Jz

∥∥ +

∥∥∥∥∂J 0
z

∂z
− ∂Jz

∂z

∥∥∥∥
}

, (5)

where ‖·‖ is a usual L2-norm in �. For more details, the concrete description is found in Park
et al (2007).

2.2. Relations between the current density J and the measured Bz

For the determination of an isotropic conductivity in �, most algorithms have used at least two
independent injected currents because infinitely many conductivities may generate the same
interior current density (Kim et al 2003). By assuming that only one component magnetic flux
density Bz is available without rotating the object; the conventional harmonic Bz algorithm
uses the fundamental relation

−∂J 1
y

∂x
+

∂J 1
x

∂y
= 1

μ0
∇2B1

z − ∂J 2
y

∂x
+

∂J 2
x

∂y
= 1

μ0
∇2B2

z , (6)

where Ji and Bi
z are the current densities and measured magnetic flux densities corresponding

to the injection currents I i, i = 1, 2. To characterize the relations between the current density
J and the measured Bz, assume that the conductivity value is smooth in each segmented region
Dk where � = ∪M

k=1Dk , σ belongs to a class,

� :=
{

σ = 1 +
M∑

k=1

μkχDk

∣∣∣∣ − 1 < μk < ∞, μk 
= 0, μk smooth in Dk

}
. (7)
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Here, χDk
denotes the characteristic function in Dk . For an isotropic conductivity σ , the

current density can be represented as J = −σ∇u where the potential u is a solution of the
following elliptic problem:

∇ · (σ∇u) = 0 in �
(8)

−σ∇u · n = J · n on ∂� and
∫

∂�

u ds = 0.

The current J and the measured Bz satisfy the relation

∇2Bz(r) = 0 if and only if ∇̃ × (Jx, Jy) = −∇̃σ(r) × ∇̃u(r) = 0. (9)

In the region ∇̃σ 
= (0, 0),∇2Bz(r) = 0 means that ∇̃σ(r) is parallel to the vector ∇̃u(r).
If we only use the relation ∇̃ × (Jx, Jy) = − 1

μ0
∇2Bz to reconstruct the conductivity image

containing edge information, it is difficult to recover the edge of conductivity with one
injection current and the corresponding measured Bz data. For these reasons, conventional
conductivity reconstruction algorithms in MREIT using one component Bz data require at
least two independent injection currents.

3. Methods

3.1. Reconstruction algorithm

We assume two independent projected currents:

Ji,P = Ji,0 + Ji,∗

= ∇αi +

(
∂βi

∂y
,−∂βi

∂x
, 0

)
, i = 1, 2, (10)

where αi and βi are solutions of (3) and (4) corresponding to different injection currents,
respectively. The projected currents Ji,P are identical to the true current Ji = −σ∇ui if
∂αi

∂z
= J i

z and ∂2αi

∂z2 = ∂J i
z

∂z
.

Generally, the currents Ji = −σ∇ui satisfy the following relation:

∇̃ × (
J i

x, J
i
y

) = −∇̃σ × ∇̃ui = ∇̃σ

σ
× (

J i
x, J

i
y

) = ∇̃ log σ × (
J i

x, J
i
y

)
(11)

for the two-dimensional curl operation ∇̃ × (
J i

x, J
i
y

)
:= ∂J i

y

∂x
− ∂J i

x

∂y
. Using the projected current

Ji,P ≈ Ji = −σ∇ui , equation (6) and (11) yield

∇̃ log σ × (
J i,P

x , J i,P
y

) ≈ − 1

μ0
∇2Bi

z. (12)

By setting τ := log σ , the vector ∇̃τ in (11) can be represented with a usual normal basis
e1 = (1, 0) and e2 = (0, 1) as

∇̃τ = a(r)e1 + b(r)e2. (13)

Relations (12) and (10) provide a matrix equation,

Ax = (A1 + A2) x = b, (14)

where

A1 =

⎛
⎜⎜⎝

∂α1

∂y
−∂α1

∂x

∂α2

∂y
−∂α2

∂x

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

−∂β1

∂x
−∂β1

∂y

−∂β2

∂x
−∂β2

∂y

⎞
⎟⎟⎠ , (15)
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x = (a(r), b(r))T and b = (−∇̃2β1(r),−∇̃2β2(r))
T . The transversal gradient vector ∇̃τ

for each imaging slice, �t , is obtained by solving the matrix equation (14). The log-scale
conductivity τ = log σ is recovered from x = (

∂τ
∂x

, ∂τ
∂y

)
in (14) by

τ(r) = −
∫

�t

∇̃
2(r − r′) · ∇̃τ(r′) dr′ +
∫

∂�t

∂
2(r − r′)
∂ν

τ(r′) dlr′ , (16)

where �t is the two-dimensional imaging plane z = t , and 
2(r − r′) = 1
2π

log |r − r′| is
the two-dimensional fundamental solution of the Laplace equation. The value of τ on the
boundary ∂�t satisfies

τ(r)

2
+

1

2π

∫
∂�t

(r − r′) · ν

|r − r′|2 τ(r′) dl′r = 1

2π

∫
�t

(r − r′) · ∇̃τ(r′)
|r − r′|2 dr′. (17)

Theoretically, the solvability of the integral equation (17) is well known, and we can compute
τ in the imaging slice �t using (16) (Oh et al 2003). The reconstructed τ provides the interior
conductivity value σ(r) = eτ(r). In practical situations using the measured noisy Bz data, since
intensities of the current J are weak and noisy, and the measured Bz data are more distorted
near the boundary ∂�t , it is difficult to expect a reliable reconstructed conductivity image
near the boundary. For these reasons, regularizing terms added to reconstruct the conductivity
distribution near the boundary.

With the homogeneous solution αi , the proposed method recovers the interior conductivity
distribution directly and rapidly without any iterative step because it only solves the two-
dimensional Laplace equation (4) to image the conductivity distribution in the ROI region,
instead of solving three-dimensional forward problems in �.

It is interesting to observe the role of stiff matrix A1 + A2 in (14); the one component A1

from the homogeneous potentials αi is the same with the stiff matrix of the first step of the
harmonic Bz algorithm in Oh et al (2003), and the other component A2 from βi in (4) has
all contrast information of the conductivity. In other words, the conventional harmonic Bz

algorithm updates iteratively the conductivity distribution in � by solving three-dimensional
elliptic equations at each step to get the matrix component A2.

3.2. Sensitivity of the conductivity with respect to Ji,P and Ji

We used the projected current Ji,P instead of Ji to extract conductivity information in (12). In
this section, we investigate the influence of the approximated Ji,P ≈ Ji on the reconstructed
conductivity distribution in �. To see more precisely, we denote τP as the reconstructed one
from Ji,P and τ as the true one. From relation (11), we have

∇̃τ × (
J i

x, J
i
y

) = ∇̃τP × (
J i,P

x , J i,P
y

)
(18)

because the harmonic equation ∇̃2βi = 1
μ0

∇2Bi
z on the imaging slice �t implies

∇̃ × (
J i

x, J
i
y

) = ∇̃ × (
J i,P

x , J i,P
y

) = − 1

μ0
∇2Bi

z. (19)

By subtracting ∇̃τ × (J i
x, J

i
y) from both sides of (18), the difference vector ∇̃(τP − τ) can be

represented as a matrix form:

(A1 + A2) (∇̃τP − ∇̃τ)T = A3(∇̃τ)T , (20)

where

A3 =
(−(

J 1
y − J 1,P

y

) (
J 1

x − J 1,P
x

)
−(

J 2
y − J 2,P

y

) (
J 2

x − J 2,P
x

)
)

. (21)
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Equation (20) shows that the difference vector ∇̃(τP − τ) depends on the characteristics
of A1 + A2, A3 and ∇̃τ . We observe some notable features from (20); the determined τP

converges to τ in a stable manner as JP
i goes to Ji because the matrix A3 also vanishes. If the

true conductivity σ is a constant on some imaging slice region, then the recovered conductivity
from the projected current is also a constant because the difference ∇̃(τP −τ) is also vanishing
by (20).

Using matrix equations (16) and (20), the difference between τP and τ can be represented
as

τP (r) − τ(r) = −
∫

�t

∇̃
2(r − r′) · ((A1 + A2)
−1A3(∇̃τ)T ) dr′

+
∫

∂�t

∂
2(r − r′)
∂ν

(τP (r′) − τ(r′)) dlr′ . (22)

From relation (22), the reconstructed conductivity σP := eτP

from the projected current JP

has also stability depending on the z-components of J and JP :

‖σP − σ‖ � C

{∥∥∥∥∂α

∂z
− Jz

∥∥∥∥ +

∥∥∥∥∂2α

∂z2
− ∂Jz

∂z

∥∥∥∥
}

(23)

where the constant C depends on the condition number of A1 + A2, ∇̃τ and the variance of the
boundary values τP − τ on ∂�t .

3.3. Model of simulation

For a numerical simulation, we took a cylindrical phantom model with a diameter of 14 cm
and a height of 20 cm as shown in figure 1(a). Two pairs of electrodes were attached at the
surface of the model. The amount of each injection current was 10 mA compared with the
conventional harmonic Bz algorithm. The target conductivity distribution σ had eight different
anomalies with different conductivity values 2, 3, 0.2, 0.7 and background 1 as depicted in
figure 1(b). If the simulated conductivity distribution is cylindrical, the projected current JP

is identical to the true current. To simulate a general case, we intentionally designed a three-
dimensional conductivity shape and imaged at each slice of the model. Figure 1(c) shows the
cross-sectional conductivity images of the model from the bottom to the top, 9 images were
selected from total 24 slice images. The image (7) in figure 1(c) denotes the center slice image
of the model.

3.4. Phantom experiments

For a phantom experiment, a current was injected into the imaging object through a pair of
surface electrodes. The injection current produces an internal current density distribution
that is determined by the geometry and conductivity distribution of the imaging object. We
measured only the z-component of the induced magnetic flux density by using the ICNE MR
pulse sequence which injects the current between the end of the first RF pulse and the end of
the reading gradient (Park et al 2006). The phase-encoding gradient was switched on for a
brief period Tpe before the signal was collected during the data acquisition time width Ts for
a fixed echo time TE . A cylindrical phantom with 12 cm diameter and height was attached
two recessed electrodes at the middle of the phantom. We filled the background with saline
solution (1 g/l CuSO4, 3.12 g/l NaCl) to control T1 and T2 decays of spin density. The
conductivity value of the background was 0.6 S m −1. Two cylindrical objects, the diameters
of left and right anomalies were 3.6 cm and 3 cm, respectively, in figure 2(a) filled with an agar
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Figure 1. Simulation setup. (a) Three-dimensional cylindrical model and imaging slices. (b)
Three-dimensional conductivity anomaly model. (c) Cross-sectional conductivity images at the
imaging slices in (a).
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Figure 2. (a) MR magnitude image. (b) and (c) show images of measured Bi
z data due to transversal

and vertical injection currents at the middle of the phantom.

gel (left : 1 g/l CuSO4, 12.5 g/l NaCl, 15 g/l agar, and right : 1 g/l CuSO4, 0.8 g/l NaCl,
15 g/l agar) to create a contrast in both conductivity and spin density, whose conductivity
values of left one and right one are 1.4 and 0.3 S m −1, respectively. The conductivity values
were measured after the experiments using the four-electrode method with an impedance
analyzer. Note that the MR magnitude images of two cylindrical objects in the agar phantom in
figure 2(a) were almost same. After positioning the phantom inside a 3.0 T MRI scanner
(Magnum 3, Medinus, Korea), we collected k-space MR data using the spin echo pulse
sequence. The measured Bz data from the collected k-space data were shown in figures 2(b)
and (c) due to transversal and vertical injection currents, respectively.
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0
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Figure 3. Simulated magnetic flux density and projected current density by injecting the x-direction
current. (a) Simulated Bz data at the middle slice. (b) and (c) are the x- and y-components of the
projected current J1,P = (J 1,P

x , J 1,P
y , J 1,P

z ) for the simulation experiment.

Table 1. L2-relative errors for the projected currents E(J 1,P
x ), E(J 1,P

y ) and E(J1,P ) for each
imaging slice (1)–(9) in figure 1(c).

Slice number 1 2 3 4 5 6 7 8 9

E(J 1,P
x ) 0.053 0.063 0.064 0.030 0.028 0.032 0.030 0.026 0.089

E(J 1,P
y ) 0.064 0.035 0.038 0.044 0.055 0.069 0.062 0.044 0.037

E(J1,P ) 0.050 0.055 0.055 0.036 0.034 0.036 0.033 0.031 0.077

We injected 10 mA current and used the total current injection time width Tc + Ts =
24.6 ms, Tc = 15.1 ms and data acquisition time width Ts = 9.5 ms for a fixed echo time TE =
25 ms in the ICNE pulse sequence. The slice thickness was 6 mm with no slice gap, the number
of axial slices was eight at the middle of the phantom, and TR/TE = 800/25 ms. Field of
view (FOV) was 200 × 200 mm 2 with the matrix size 128×128, and the number of averaging
was 4.

4. Results

4.1. Simulation results

We depicted the noiseless simulated Bz data due to the x-direction injected current using
the three-dimensional MREIT solver (Lee et al 2003) at the middle slice of the model in
figure 3(a) and the recovered projected current J1,P = J1,0 + J1,∗ in figures 3(b) and (c). The
relative L2-error of a reconstructed projected current density image is defined as

E
(
J 1,P

x

)
:=

√√√√∑
i,j

(
J 1

x (i, j) − J
1,P
x (i, j)

)2

∑
i,j

(
J 1

x (i, j)
)2 =

∥∥J 1
x − J 1,P

x

∥∥∥∥J 1
x

∥∥ . (24)

Table 1 shows E
(
J 1,P

x

)
, E

(
J 1,P

y

)
and E(J1,P ) values for each imaging slice (1)–(9) in

figure 1(c).
Figures 4(a) and (b) show the reconstructed conductivity images at each imaging slice by

applying the harmonic Bz algorithm and the proposed algorithm using Ji,P , i = 1, 2.
To obtain the conductivity images in figure 4(b), we only used the background potentials

ui,0 and the projected currents Ji,P , i = 1, 2 by solving two-dimensional Laplace equations.
Up to now, most iterative algorithms in MREIT including the harmonic Bz algorithm have to
solve several tedious and time-consuming three-dimensional forward problems corresponding
injection currents at each update step to arrive at the true conductivity image. Considering
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(a) (b)

0

2

3

1

S/m

Figure 4. Simulation experiment results at each slice with noiseless Bi
z data, i = 1, 2. (a) The third

updated conductivity images using the harmonic Bz algorithm. (b) Reconstructed conductivity
images using the proposed projected current method.

the amounts of computation to visualize the conductivity distribution, those of the first
updated conductivity image using the harmonic Bz algorithm are corresponding to those
of the reconstructed one using the projected currents because both procedures commonly need
to solve the 2 × 2 matrix system for each voxel and take a volume potential as in (16) starting
from homogeneous potentials in �.

To visualize the conductivity in figure 4(a), we needed the conductivity updating step
three times which requires three-dimensional forward solvers to update the voltage potentials.
In spite of several updating steps, the reconstructed images of the harmonic method in
figure 4(a) still had some loss in the region with high conductivity.

Simulation results at the center slice of image number (7) in figure 1(c) are displayed
in figure 5. The profile images on the marked line in the target conductivity show that the
value of the third updated conductivity using the harmonic Bz algorithm was lower than the
reconstructed conductivity value using the projected current method.

The estimated relative L2-error values E(σ r) on the centered slice for figures 5(b) and (c)
were 0.212 and 0.1673, respectively.

The iterative harmonic Bz algorithm updates the conductivity distribution using the
potentials corresponding to the previous updated conductivity. Since the updating ratio
depends on the previous step conductivity values, thus it requires lots of iteration numbers
to arrive at the high-conductivity values. Moreover, iteration numbers to arrive at the true
conductivity depend on the anomaly shape and size and the conductivity value. With the noisy
measured data, it is difficult to recover the high conductivity using the iterative algorithms
without noise accumulation.

4.2. Recovery of conductivity using noised Bz data

We assume that the noise characteristics of the measured Bz follow the uniform Gaussian
random variable with zero mean and variance sd2(Bz). From the analysis by Sadleir et al
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Figure 5. Simulation experiment results at the center of imaging model (the image of number (7)
in figure 1(c)). (a) True conductivity image and a reference line. (b) The third updated conductivity
images using the harmonic Bz algorithm. (c) Reconstructed conductivity image using the projected
current method. (d) Profile images of the reconstructed conductivities on the marked line. Solid
lines are used for the true conductivity; dashed line and triangle are for the projected current
method; and dotted line and circ-mark are for third updated conductivity image of the harmonic
Bz algorithm.

(2005) and Scott et al (1992), the noise standard deviation of Bz is described as

sd(Bz)(r) = 1

2γ TcSNR(r)
, (25)

and SNR is defined as

SNR(r) := |M|(r)
sd(M)

, (26)

where γ = 26.75 × 107 is the gyromagnetic ratio of hydrogen, Tc is the current pulse width,
and M is the measured spin density from an MRI scanner. We artificially added the Gaussian
random noise in the simulated Bi

z data, i = 1, 2 to make SNR = 30, 50 and 100, respectively
with Tc = 20 ms. Figures 6(a)–(c) show the reconstructed conductivity images using the
projected current method. Figures 6(d)–(f) show the third updated conductivity images
using the harmonic Bz algorithm. We represented the relative errors E

(
σ r

p

)
, and E

(
σ r

h,3

)
for the projected current method, the third updated reconstructed conductivity distributions
respectively at the middle slice in table 2. The noise levels of the reconstructed conductivity
distribution in table 2 were higher than those of the projected currents because the recovery
procedure depends on the condition numbers of the matrices A1, A2 and A3 in (20).
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Figure 6. Simulation experiment results with noised Bi
z data; SNR = 30, 50, 100, respectively.

(a)–(c) Reconstructed conductivity images using the projected current method. (d)–(f) Third
updated conductivity images using the harmonic Bz algorithm.

Table 2. Relative errors E(σ r
p) for the projected current method, E(σ r

h,3) for the third updated
reconstructed conductivity distributions, respectively.

SNR = 30 SNR = 50 SNR = 100

E(σ r
p) 0.3054 0.2789 0.2478

E(σ r
h,3) 0.3177 0.2814 0.2717

4.3. Phantom experiment results

Figures 7(a) and (d) show the x- and y-components of J1,∗ = J1,P − J1,0 using the
measured B1

z data. The recovered x- and y-components of the homogeneous and projected
current are displayed in figures 7(b) and (e), and figures 7(c) and (f), respectively.
Figures 8(a) and (b) are the recovered conductivity images using the harmonic Bz algorithm of
the first and the fifth updated images. Because the computed projected current at the centered
slice is almost same to the true current by injecting transversal currents, to include deviated
regions, we displayed three recovered conductivity images from the center slice to the bottom
region of the phantom among the measured eight slice Bz images with a thickness of 6 mm;
the first row is the recovered conductivity images at the center slice, the middle and bottom
rows are corresponding to 6 and 12 mm below slices from the centered one.

Figure 8(c) is the recovered conductivity image using the projected current Ji,P , i = 1, 2.
Although the projected currents may be slightly deviated from the true current, the directly
recovered conductivity images at the middle and bottom rows using the projected current
method showed closer conductivity values to the measured true values than results using the
harmonic Bz algorithm.
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Figure 7. Projected current of the phantom experiment at the middle slice by a transversally
injected current. (a) and (d) Components of J1,∗ := (

∂β1
∂y

,− ∂β1
∂x

, 0) by solving (4). (b) and (e) The

x- and y-components of the homogeneous current J1,0. (c) and (f) The x- and y-components of the
recovered projected current J1,P .
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Figure 8. Phantom experiment results. (a) and (b) Recovered conductivity images using the
harmonic Bz algorithm of first updated image and five times iterated image. (c) Recovered
conductivity image using the projected current. (d) Profile images of the reconstructed conductivity
on a line passing through the two included anomalies. Dashed-dot line, dot line and solid line are
corresponding to the reconstructed conductivity (a), (b) and (c), respectively.
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Note that the MR magnitude image did not distinguish the two cylindrical objects in
figure 2, but clearly the conductivity image contrast was observed in two cylindrical anomalies
in figure 8. The first updated conductivity from the homogeneous initial guess using the
harmonic Bz algorithm provided the sufficient distinguishable contrast of the anomaly. The
profile images in figure 8(d) compared the conductivity value on the line through the two
included anomalies between the first and fifth updated images using the harmonic Bz method
and the image using the proposed one. We required over 20 min to reconstruct the conductivity
image figure 8(b) using the harmonic Bz method by iterating five times in pentium IV, CPU
2.4 GHz and 1 G ram operating system computing environment. However, we constructed the
conductivity image within a minute using the projected currents in figure 8(c).

5. Discussion

The projected current JP does not depend on the conductivity property; it can be calculated
for the isotropic or anisotropic conductivity case. In this paper, under the assumption of the
isotropic conductivity, we reconstructed the conductivity value directly and stably using the
projected current JP .

For the harmonic Bz algorithm, let us denote the nth update stiff matrix:

An =

⎛
⎜⎜⎝

∂u1
n

∂y
−∂u1

n

∂x

∂u2
n

∂y
−∂u2

n

∂x

⎞
⎟⎟⎠ , b = 1

μ0

(
∇2B1

z

∇2B2
z

)
. (27)

The iteratively updated conductivity can be written in the following form :

∇̃σ1 = ∇̃σ0 + A−1
0 (b − A0∇̃σ0)

∇̃σ2 = ∇̃σ0 + A−1
0 (b − A0∇̃σ0) + A−1

1 (b − A1∇̃σ1)

...

∇σ̃n+1 = ∇̃σ0 +
∑n

i=0

(
A−1

i (b − Ai∇̃σi)
)

= ∑n
i=0

(
A−1

i b
) − ∑n

i=1 ∇̃σi.

(28)

The measured data b contain unavoidable noise nT
∇2Bz

:= (
n1

∇2B1
z
, n2

∇2B2
z

)
, b = btrue + n∇2Bz

,

where btrue is the noiseless data, and n∇2Bz
is the noise vector from the noise in the magnetic

flux Bi
z, i = 1, 2. Relation (28) shows that the reconstructed ∇̃σn+1 accumulates the noise

effects
∑n

i=0

(
A−1

i n∇2Bz

)
. Although the harmonic Bz algorithm includes the integration step

to obtain σn+1 from ∇̃σn+1, the increasing iteration numbers to update the conductivity do not
guarantee the improvement of the conductivity image.

The conductivity reconstruction procedure using the harmonic Bz and the proposed
algorithms involves the integration of the gradient of conductivity for each slice. The
conductivity values on the boundary at each imaging slice can be obtained by solving the
boundary integral equation (17). However, since the gradient values of conductivity near
the boundary include non-negligible noise, it is not easy to determine the conductivity values
on the boundary using the boundary integral equation (17). In this paper, we simply used the
known background conductivity values on the boundary to determine the interior conductivity
value.

Comparing with the harmonic Bz algorithm, the proposed projected current based non-
iterative method has provided stable and feasible reconstructed conductivity distributions. For
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a general three-dimensional object, since the z-component of JP is the z-component of the
background current J0, the proposed method also has some gap between the reconstructed
conductivity and the true one. However, the projected current JP and the reconstructed
conductivity using JP have stabilities depending on the z-components of current Jz and JP

z as
shown in (5) and (23).

Since the z-component of JP = J0 +J∗ is the z-component of the homogeneous current J0,
we may expect that the current JP can be closer to the true current J utilizing the assumption
of the isotropic conductivity. In other hand, it may be useful to investigate the anisotropic
conductivity property via the projected current JP .

6. Conclusions

To reconstruct conductivity images, many methods have been suggested but almost all of the
algorithms use iterative methods and need heavy computations for solving three-dimensional
forward problems to update. We proposed a new algorithm to reconstruct the conductivity
using the projected current. The projected current is decomposed as the background current
and the curl of the potential which is the solution of a simple two-dimensional harmonic
equation. Using the projected current’s structure and the measured magnetic flux density data
efficiently, the proposed algorithm recovers the isotropic conductivity directly, stably and fast.

Acknowledgments

O Kwon was supported by the Korea Research Foundation Grant funded by the Korean
Government (MOEHRD)(KRF-2005-201-C00004). This work was supported by the
SRC/ERC program of MOST/KOSEF (R11-2002-103).

References

Birgul O, Hamamura M J, Muftuler L T and Nalcioglu O 2006 Contrast and spatial resolution in MREIT using low
amplitude current Phys. Med. Biol. 51 5035–50

Eyuboglu M, Reddy R and Leigh J S 1999 Imaging electrical current density using nuclear magnetic resonance
Elektrik 6 201–14

Gamba H R, Bayford D and Holder D 1999 Measurement of electrical current density distribution in a simple head
phantom with magnetic resonance imaging Phys. Med. Biol. 44 281–91

Gao N, Zhu S A and He B A 2006 New magnetic resonance electrical impedance tomography (MREIT)
algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity Phys.
Med. Biol. 51 3067–83

Hamamura M J, Muftuler L T, Birgul O and Nalcioglu O 2006 Measurement of ion diffusion using magnetic resonance
electrical impedance tomography Phys. Med. Biol. 51 2753–62

Ider Y Z and Birgul O 1998 Use of the magnetic field generated by the internal distribution of injected currents for
electrical impedance tomography (MR-EIT) Elektrik 6 215–25

Joy M L 2004 MR current density and conductivity imaging: the state of the art Proc. 26th Ann. Int. Conf. IEEE
EMBS (California: San Francisco) pp 5315–9

Joy M L, Scott G C and Henkelman R M 1989 In vivo detection of applied electric currents by magnetic resonance
imaging Magn. Reson. Imaging 7 89–94

Kim Y J, Kwon O, Seo J K and Woo E J 2003 Uniqueness and convergence of conductivity image reconstruction in
magnetic resonance electrical impedance tomography Inverse Problems 19 1213–25

Kwon O, Woo E J, Yoon J R and Seo J K 2002 Magnetic resonance electrical impedance tomography (MREIT):
simulation study of J-substitution algorithm IEEE Trans. Biomed. Eng. 48 160–7

Lee B I, Oh S H, Woo E J, Lee S Y, Cho M H, Kwon O, Seo J K, Lee J Y and Baek W S 2003 Three-dimensional
forward solver and its performance analysis in magnetic resonance electrical impedance tomography (MREIT)
using recessed electrodes Phys. Med. Biol. 48 1971–86

http://dx.doi.org/10.1088/0031-9155/51/19/020
http://dx.doi.org/10.1088/0031-9155/44/1/020
http://dx.doi.org/10.1088/0031-9155/51/12/005
http://dx.doi.org/10.1088/0031-9155/51/11/005
http://dx.doi.org/10.1016/0730-725X(89)90328-7
http://dx.doi.org/10.1088/0266-5611/19/5/312
http://dx.doi.org/10.1109/10.979355
http://dx.doi.org/10.1088/0031-9155/48/13/309


Non-iterative conductivity reconstruction algorithm in MREIT 6961

Muftuler L, Hamamura M, Birgul O and Nalcioglu O 2004 Resolution and contrast in magnetic resonance electrical
impedance tomography(MREIT) and its application to cancer imaging Technol. 3 599–609

Oh S H, Lee B I, Woo E J, Lee S Y, Cho M H, Kwon O and Seo J K 2003 Conductivity and current density image
reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography Phys.
Med. Biol. 48 3101–16

Oh S H, Lee B I, Woo E J, Lee S Y, Kim T S, Kwon O and Seo J K 2005 Electrical conductivity images of biological
tissue phantoms in MREIT Physiol. Meas. 26 279–88

Park C, Kwon O, Woo E J and Seo J K 2004a Electrical conductivity imaging using gradient Bz

decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT) IEEE Trans. Med.
Imaging 23 388–94

Park C, Lee B I, Kwon O and Woo E J 2006 Measurement of induced magnetic flux density using injection current
nonlinear encoding (ICNE) in MREIT Physiol. Meas. 28 117–27

Park C, Lee B I and Kwon O 2007 Analysis of recoverable current from one component of magnetic flux density in
MREIT Phys. Med. Biol. 52 3001–13

Park C, Park E J, Woo E J, Kwon O and Seo J K 2004b Static conductivity imaging using variational gradient Bz

algorithm in magnetic resonance electrical impedance tomography Physiol. Meas. 25 269–75
Sadleir R et al 2005 Noise analysis in MREIT at 3 and 11 Tesla field strength Physiol. Meas. 26 875–84
Scott G C, Joy M L, Armstrong R L and Henkelman R M 1991 Measurement of nonuniform current density by

magnetic resonance IEEE Trans. Med. Imaging 10 362–74
Scott G C, Joy M L, Armstrong R L and Hankelman R M 1992 Sensitivity of magnetic resonance current density

imaging J. Magn. Reson. 97 235–54
Seo J K, Yoon J R, Woo E J and Kwon O 2003 Reconstruction of conductivity and current density images using only

one component of magnetic field measurements IEEE Trans. Biomed. Eng. 50 1121–4

http://dx.doi.org/10.1088/0031-9155/48/19/001
http://dx.doi.org/10.1088/0967-3334/26/2/026
http://dx.doi.org/10.1109/TMI.2004.824228
http://dx.doi.org/10.1088/0967-3334/28/2/001
http://dx.doi.org/10.1088/0031-9155/52/11/005
http://dx.doi.org/10.1088/0967-3334/25/1/030
http://dx.doi.org/10.1088/0967-3334/26/5/023
http://dx.doi.org/10.1109/42.97586
http://dx.doi.org/10.1109/TBME.2003.816080

	1. Introduction
	2. Theory
	2.1. Projected current
	2.2. Relations between

	3. Methods
	3.1. Reconstruction algorithm
	3.2. Sensitivity of
	3.3. Model of simulation
	3.4. Phantom experiments

	4. Results
	4.1. Simulation results
	4.2. Recovery of
	4.3. Phantom experiment results

	5. Discussion
	6. Conclusions
	Acknowledgments
	References

