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Abstract
Models of the electrical properties of biological tissue have been the subject
of many studies. These models have sought to explain aspects of the dielectric
dispersion of tissue. This paper develops a mathematical model of the complex
permittivity of tissue as a function of frequency f , in the range 104 < f <

107 Hz, which is derived from a formulation used to describe the complex
permittivity of porous media. The model introduces two parameters, porosity
and percolation probability, to the description of the electrical properties of
any tissue which comprises a random arrangement of cells. The complex
permittivity for a plausible porosity and percolation probability distribution
is calculated and compared with the published measured electrical properties
of liver tissue. Broad agreement with the experimental data is noted. It is
suggested that future detailed experimental measurements should be undertaken
to validate the model. The model may be a more convenient method of
parameterizing the electrical properties of biological tissue and subsequent
measurement of these parameters in a range of tissues may yield information
of biological and clinical significance.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The electrical properties of tissue have been studied for many years (Foster and Schwan 1989).
These properties are conveniently described using the absolute complex permittivity ε, which
comprises the permittivity ε′ (describing the polarizability of the medium) and conductivity
σ . The absolute complex permittivity is then defined by

ε = ε′ + i
σ

ω
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where ω is the angular frequency of the applied electrical field. Conventionally, the complex
permittivity is expressed relative to the permittivity of free space, ε0, and thus

ε = ε′ + i
σ

ωε0
(1)

where it is understood that ε′ now denotes relative permittivity and σ denotes absolute
conductivity and is in units of S m−1.

A variety of approaches have been taken to describing the dispersion relationship
(Foster and Schwan 1989, Raicu 1999, Paulson et al 2000), including use of semi-empirical
expressions (Cole and Cole 1941) and those based on theoretical analysis (for example, see
MacDonald (1987)). However, only limited insight into the link between the underlying
structural features and the consequent electrical properties of tissues has been gained. For
example, the framework developed by Hanai et al (1979), and applied by others to biological
tissues (Foster and Schwan 1989), treats tissue as a suspension of uniform spheres in a
conducting medium. The geometrical accuracy of this model is therefore limited. Other
investigators have adapted this basic model by considering the suspensions as ellipsoidal
particles (Boned and Peyrelasse 1983). Gielen and co-workers (Gielen et al 1986) developed
a model of electrical conduction in skeletal muscle based on a particular geometry for tissue
structure, in which muscle cells were considered as tubes with uniform hexagonal cross-
section. However, the problem of characterizing the complex geometry of tissue in a convenient
manner remains.

Sahimi (2003) has noted that the enormous variation in the morphology of natural or
man-made materials made the task of describing and quantifying such morphologies appear
hopeless, until a few decades ago. A number of recent developments have changed this
outlook, including novel experimental techniques, advances in computational power and the
concepts of fractal geometry and percolation theory. For example, Dissado and co-workers
(Dissado 1990) have developed a fractal approach to the description of tissue permittivity.
However, in general, such newer techniques have not been widely applied to the description
of the electrical properties of tissue. This paper develops a mathematical framework based on
percolation theory.

The frequency dependence of the complex permittivity of biological tissue in the so-called
β-dispersion is attributed to capacitive charging of cellular membranes and dipolar relaxation
of proteins. It has a typical centre frequency of 3 MHz (Foster and Schwan 1989) and is
the dispersion of interest in this paper. The general approach to describing the dispersion
has been to assume initially that a single dipole relaxation time τ characterizes the particular
polarization process (the Debye model; Pethig and Kell 1987).

ε = ε∞ +
εs − ε∞
1 − iωτ

where ε∞ and εs denote the complex permittivities when ωτ � 1 and �1, respectively. The
likely distribution of relaxation times is then accounted for by an empirical parameter, most
commonly by using the expression developed by Cole and Cole (1941), which introduces a
distribution parameter α:

ε = ε∞ +
εs − ε∞

1 + (−iωτ)1−α
,

τ becomes, in effect, an average relaxation time for the tissue in the frequency range of interest.
Empirically, the relative permittivity spectrum of a tissue may therefore be described in terms
of a sum of multiple terms similar to that above as

ε(ω) = ε∞ +
∑

n

�εn

1 + (−iωτn)1−αn
+

iσs

ωε0
(2)
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where �εn = εs − ε∞ for each (the nth) term and σ s denotes the static ionic conductivity
(Gabriel et al 1996a). It is important to note that the choice of the number of terms is dependent
on the degree of accuracy sought, reflecting the empirical nature of the curve fit. Gabriel et al
(1996a) note that n = 4 or 5 are common choices, and to fit to the β-dispersion, two terms
(n = 2 and 3) are used in a four-term model (Gabriel et al 1996a).

The question to be answered may be posed as follows: can the expression for ε(ω)
covering the β-dispersion—assumed to cover the frequency range 100 kHz to 10 MHz—be
deduced from the geometry of the tissue using parameters that reflect cellular arrangements?
A similar issue has been of long standing interest in geophysics (Haslund et al 1994) and
materials physics (Feldman et al 2002, Sahimi 2003, Wilkinson et al 1983): in porous rock
containing water and/or oil, measurements of ε(ω) are undertaken in an attempt to determine
the extent of oil deposits. The problem is to determine the relationships between the properties
of the composite material, the properties of its constituents and their relative presence in the
composite. This is similar to the goal of tissue impedance measurements, which seeks to
determine tissue composition. Tissue comprises cells, with spaces between the cells, and may
therefore, in some general sense, be likened to a porous medium. The parameters of interest
include the relative volumes of the cells and the extra cellular space.

This paper applies a mathematical model to the description of the electrical properties
of tissue, which enables ε(ω) to be calculated given knowledge of the structural parameters
of a porous medium. The model was originally developed by Hilfer (1991) and provides an
alternative, possibly more flexible, approach to the characterization of the electrical properties
of tissue. It is applied to the description of the electrical properties of liver tissue in the
β-dispersion, and compared with experimental measurements from previous work by Gabriel
et al (1996b). The analysis may permit novel parameters for some tissues (those which have
random arrangements of cells), notably the porosity of the underlying cellular structure, to
be measured, which may be of clinical significance. Possible applications of the model may
include describing the electrical properties of malignant tissue (Walker et al 2000), which
tends to be poorly differentiated and have a relatively random cellular structure. Another
possible application may be modelling the behaviour of tissue in which changes in the water
content (which may occur during dialysis, for example Bradbury et al (2001)) affected the
porosity.

2. Development of model

The foundations of the model are described by Hilfer (1991) and Hilfer and Haslund (Haslund
et al 1994). The starting point for application of this model to tissue is the assumption that
tissue comprises a collection of unit cells. As is explained below, these unit cells may or may
not correspond to biological cells and are defined as having a length scale L. It is assumed that
these unit cells are arranged at random and that the spaces between the unit cells (the pores
in Hilfer’s original description) are occupied by a conducting (and, in this paper, polarizable)
medium. The porosity φ of the tissue is then defined as the volume of the pore space divided
by the total volume. The length scale L is defined such that L3 is the smallest volume of
measurement. In this paper, L is assumed to be of the order of a cellular length, but may
equally be of the length scale of a structural group of cells, or even at a sub-cellular level,
depending on the tissue structure being modelled. The significance of L is that a local porosity
at position R within the tissue may be defined as taking the value φ(R, L) within the unit cell
and that the properties of adjacent unit cells are not correlated. A local porosity probability
distribution function µ(φ, R; L) is then defined such that µ(φ, R; L) dφ is the probability of
finding the local porosity φ in the range φ to φ + dφ in a volume element of linear dimension
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L at the point R. If the tissue is homogeneous, then µ must be independent of R and the bulk
porosity φ̄ is given by

φ =
∫ 1

0
φµ(φ;L) dφ.

The second parameter chosen to characterize local geometry is whether the space between the
cells percolates or not. For a comprehensive discussion of percolation, see Sahimi (2003). For
cubic volume elements, each element is classified as percolating or non-percolating according
to whether or not there exists at least one face of the cube which can be connected to any of the
other faces via a path contoured completely inside the pore space. A function λ(φ) is defined
which denotes the fraction of percolating elements with local porosity φ. The geometry of the
tissue on a length scale of L is thus characterized by the two parameters µ and λ.

Because all volume elements are statistically independent, standard effective medium
theory (Landauer 1978, Sahimi 2003) may be employed to write a self-consistency equation
for the effective complex permittivity ε of the medium (see Sahimi 2003):∫

g

εloc − ε

εloc + 2ε
dp(g) = 0 (3)

where εloc is the local effective complex permttivity, g denotes the local geometry and the
probability measure p(g) represents the statistical distribution of local complex permittivities.
p(g) is not usually known and µ(φ) and λ(φ) are used as approximate descriptions. In this
case, εloc is replaced by an approximate effective permittivity, which depends only on the local
porosity φ, and is described in terms of percolating and non-percolating elements.

If εC(ω, φ) and εB(ω, φ) denote the local effective permittivities for conducting
(percolating) and blocking (non-percolating) volume elements respectively, then equation (3)
gives ∫ 1

0

εC − ε

εC + 2ε
λµ dφ +

∫ 1

0

εB − ε

εB + 2ε
(1 − λ)µ dφ = 0. (4)

Equation (4) represents the basic description of the tissue and this analysis solves the forward
problem by calculating ε for given λ, µ. Note that ε is not a function of the local porosity φ.

In summary, the model describes the complex permittivity of a tissue as a weighted
spatial average of the separate permittivities of conducting and blocking elements. The
primary purpose of the paper is to develop the theoretical framework for ε, but an outline of
how the parameters λ, µ and φ might be measured from histological observations is given
(see also appendix A).

The tissue chosen for analysis must conform to the assumptions made so far, including a
random orientation of unit cells and a combination of blocking and conducting geometries. A
number of tissues in which these assumptions may hold include poorly-differentiated tumours,
adipose tissue, bone marrow, bone (between lamellae) and liver lobules (Cormack 2001).
Liver tissue (Cormack 2001) comprises lobules, which are bounded by fibrous septa enclosing
roughly hexagonal areas of hepatocytes (the functional liver cells). Observed under relatively
low microscopic power, within each lobule, irregular rows of hepatocytes radiate towards
a central vein (see figure 1). Between each row, lie narrow spaces called sinusoids. The
hepatocytes make up irregular curved perforated plates that constitute a three-dimensional
sponge-work, the interstices of which are filled with blood, thereby exposing much of the cell
surface to blood (see figure 2). The histological analysis identifies the cells as arranged in an
approximately random, plate-like, configuration. In principle then, λ and µ may be measured
from micrographic images of tissue sections and an approach to doing this for liver tissue is set
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Figure 1. Liver lobule outlined by fibrous septa in pig liver. From figure 13–18 in Essential
Histology (Cormack 2001) and reproduced with kind permission of the publishers (JB Lippincott
Company) and the author. In human tissue, lobules are typically of size 1000–2000 µm (Leeson
and Leeson 1981a).

Figure 2. Structure of liver lobule, showing liver cells (dark) and intercellular spaces (light). Red
blood cells are also seen within the spaces (dark circles). From figures 11–61 in Histology (Leeson
and Leeson 1981b) and reproduced with kind permission of the publishers, Elsevier. Approximate
scale bar added.

out in more detail in appendix A. The purpose of this paper is to offer a proof-of-principle over
the frequency range considered, rather than a detailed assessment of quantitative agreement
and it is assumed that µ is a ‘top-hat’ function of φ, centred on a value φ0 and of width 2�

(<1). Thus,

µ(φ) = 0 φ < φ0 − �

= µ0 φ0 − � < φ < φ0 + �

= 0 φ > φ0 + �. (5)
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Since ∫ 1

0
µ(φ) dφ = 1

then

µ0 = 1/2�. (6)

Also, from equations (5) and (6), the mean porosity is given by

φ̄ =
∫ 1

0
φµ(φ) dφ

= φ0, (7)

λ(φ) is the fraction of percolating cells with local porosity φ. Again, given that the aim of this
paper is to offer a theoretical framework, which might be more rigorously tested subsequently
using extensive experimental data, a simple approach is adopted and it is assumed that

λ(φ) = 0 0 < φ < φp

= 1 φp < φ < 1. (8)

This implies that there is a critical porosity φp such that above this value all elements percolate.
This is the so-called grain-consolidation model (Hilfer 1991). It is also assumed that

φ0 − � < φp < φ0 + �. (9)

From equations (4)–(9)

2�

3ε
=

∫ φ0+�

φp

{
dφ

εc + 2ε

}
+

∫ φp

φ0−�

dφ

εB + 2ε
. (10)

The forms for εC, εB may also be estimated from histological observations (see figure 2); here,
it is assumed that conducting local geometries in the liver tissue may be represented by a layer
of cellular material of cross-sectional area a and complex permittivity εcell, in parallel with a
layer of extracellular fluid (ecf) which has complex permittivity εecf. This configuration may
be thought of as being arranged between the capacitor plates of spacing D and cross-sectional
area A (see figure 3). For blocking geometries, a plate of cellular material of thickness d
is arranged between the plates in series with a layer of ecf (see figure 3). The effect of the
interlobular fibrous septa is neglected. Analysis based on figure 3 then gives

εC = εcell(1 − φ) + φεecf (11)

and

εB = εcellεecf

εecf(1 − φ) + φεcell
(12)

as φ = 1 − (a/A) for the conducting geometry and φ = 1 − (d/D) for the blocking geometry.
The forms for εcell and εecf need to be described using observations of the cellular structure.
This is detailed in appendix B, based on a simple cubic cellular geometry of with cubes of side
t, but different geometries will yield different forms for εC, εB, and εcell. From appendix B
and some further algebraic manipulation, εcell and εecf may be written in the form

εcell = a + ib εecf = c + ih (13)

where
a = {c(1 + ηc) + ηh2}/{(1 + ηc)2 + η2h2}
b = h/{(1 + ηc)2 + η2h2}
c = ε′

ecf

h = σecf/2πf ε0

η = 2ε0/Cmt
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area A
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area A

Figure 3. Conducting and blocking geometries

and Cm denotes the cell membrane capacitance per unit area. Re-stating equation (1)

ε = ε′ + i
σ

ωε0
.

From equations (1), (10) and (13), after some algebraic manipulation, the dispersion
relationship ε(ω) is given implicitly by

2�

3ε
=

∫ φ0+�

φp

X∗ + φY ∗

E(φ)
dφ +

∫ φp

φ0−�

εecf − φY

εecfX − 2εφY
dφ (14)

where

X = a + ib + 2ε

Y = c − a + i(h − b)

E(φ) = XX∗ + (Y ∗X + X∗Y )φ + YY ∗φ2

and X∗, Y∗ denote the complex conjugates of X and Y. Each of the integrals on the RHS of
equation (14) may be evaluated analytically, and the resulting equation then solved numerically
using Maple 10 (Waterloo Maple Inc.) for the absolute conductivity σ and the relative
permittivity ε′ of the tissue for 104 < f < 107 Hz. The results are compared to an empirical
fit given by equation (2). The choice of parameter values is now described.

3. Parameter values for model

The estimates of the parameter values used in the solution of equation (14) are given in table 1,
together with the source of each estimate or parameter range. These parameters are estimates
and future work might focus on more accurate experimental measurements, including those
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Table 1. Estimates of model parameters.

Model parameter Estimate or range Source of estimate

ε′
cyt, ε′

ecf 80 Foster and Schwan (1987)

σ cyt 0.3 S m−1 Gowrishanker and Weaver (2006)
σ ecf 1.2 S m−1 Gowrishanker and Weaver (2006)
Cm 0.01 F m−2 Foster and Schwan (1987)
t 30 µm Bacon et al (2006)
φ0 0.1 < φ0 < 0.4 Appendix A
φp 0.1 < φp < 0.4 Model parameter
� 0.1 Model parameter

Table 2. Parameters for equation (2) used to empirically model the dielectric spectrum of liver
tissue (from table 1, Gabriel et al 1996a). ε∞ = 4.0 and σ s = 0.02 S m−1.

n �εn τ n αn

1 39 8.84 ps 0.1
2 6000 530.52 ns 0.2
3 5.0 × 104 22.74 µs 0.2
4 3.0 × 107 15.915 ms 0.05

for λ, µ. The parameter values required for equation (2) are given in table 2 for liver (from
Gabriel et al (1996a)).

4. Results

The dispersion relations for ε′ and σ are illustrated in figures 4–11 for 104 < f < 107 Hz
(plotted as logarithmic values) over a range of parameter values given in table 1 (and noted on
each figure) and in comparison with the empirical values fitted by the Cole–Cole relationship
for liver tissue (see equation (2) and table 2).

5. Discussion

The model describes the complex permittivity of a tissue as a weighted spatial average of
the separate permittivities of conducting and blocking elements. The permittivities of the
elements are, in turn, derived from simple geometrical models.

The results shown in figures 4–11 demonstrate a number of important features; the
permittivity ε′ is relatively strongly dependent on φ0 at the lower frequencies but less sensitive
to the values of � and φp in the frequency range 104 < f < 107 Hz. From figure 4(a), as φ0

increases, ε′ decreases. This is likely to be due to increasing dominance of purely conductive
pathways in the tissue increase. The model dispersion curves in figures 4(a) and 5(a) assume
a different shape to the Cole–Cole fit, as ε′ attains a plateau value at lower frequencies for
the largest values of φ0 and φp, respectively. From figure 5(a), as φp increases, ε′ initially
increases (φp = 0.15) and then decreases (φp = 0.25). Figure 4(b) confirms that σ increases
as φ0 increases, the result of more conducting pathways occurring in the tissue. In figure 5(b),
σ decreases as φp increases, the result of the tissue impedance being increasingly dominated
by capacitive terms as the percolation threshold increases.

Figures 6(a) and (b) show that the model dispersion is relatively insensitive to the value
of the parameter � in the frequency range 104 < f < 107 Hz and for the other parameter
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Figure 4. (a) Dispersion for ε′ over frequency range 104 < f < 107 for φp = 0.15, � = 0.1 and
other parameter values as in table 1. (b) Dispersion for σ over frequency range 104 < f < 107 for
φp = 0.15, � = 0.1 and other parameter values as in table 1.
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Figure 5. (a) Dispersion for ε′ over frequency range 104 < f < 107 for φ0 = 0.15, � = 0.1 and
other parameter values as in table 1. (b) Dispersion for σ over frequency range 104 < f < 107 for
φ0 = 0.15, � = 0.1 and other parameter values as in table 1.
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Figure 6. (a) Dispersion for ε′ over frequency range 104 < f < 107 for φ0 = 0.15, φp = 0.15 and
other parameter values as in table 1. (b) Dispersion for σ over frequency range 104 < f < 107 for
φ0 = 0.15, φp = 0.15 and other parameter values as in table 1.

1

2

3

4

5

4 5 6 7

log(f)

log(ε’)

ColeCole

Cm*d=1E-7

Cm*d=3E-7

Cm*d=5E-7

-1.5

-1.0

-0.5

0.0

4 5 6 7
log(f)

log(σ)

ColeCole

Cm*d=1E-7

Cm*d=3E-7

Cm*d=5E-7

(a)

(b)

Figure 7. (a) Dispersion for ε′ over frequency range 104 < f < 107 for φ0 = 0.15, φp = 0.15,
� = 0.1 and range of Cm values. Other parameter values as in table 1. (b) Dispersion for σ over
frequency range 104 < f < 107 for φ0 = 0.15, φp = 0.15, � = 0.1 and range of Cm values. Other
parameter values as in table 1.
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Figure 8. (a) Dispersion for ε′ over frequency range 104 < f < 107 for φ0 = 0.15, φp = 0.15,
� = 0.1 and range of σ cyt values. Other parameter values as in table 1. (b) Dispersion for σ over
frequency range 104 < f < 107 for φ0 = 0.15, φp = 0.15, � = 0.1 and range of σ cyt values. Other
parameter values as in table 1.
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Figure 9. (a) Dispersion for ε′ over frequency range 104 < f < 107 for φ0 = 0.15, φp = 0.15,
� = 0.1 and range of σ ecf values. Other parameter values as in table 1. (b) Dispersion for σ over
frequency range 104 < f < 107 for φ0 = 0.15, φp = 0.15, � = 0.1 and range of σ ecf values. Other
parameter values as in table 1.
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Figure 10. (a) Best fit of model to Cole–Cole dispersion for ε′ over frequency range 104 < f <

107. φ0 = 0.18, φp = 0.2, � = 0.1, σ cyt = 0.2, σ ecf = 1.2, Cm = 0.005 F m−1 and t = 20 µm. Other
parameter values as in table 1. (b) Best fit of model to Cole–Cole dispersion for σ over frequency
range 104 < f < 107. φ0 = 0.18, φp = 0.2, � = 0.1, σ cyt = 0.2, σ ecf = 1.2, Cm = 0.005 F m−1

and t = 20 µm. Other parameter values as in table 1.
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Figure 11. (a) Dispersion for ε′ compared to Cole–Cole empirical plot over frequency range 104 <

f < 107 for different values of �, plotted using linear y-axis. φ0 = φp = 0.4. Other parameter
values as in table 1. (b) Dispersion for σ compared to Cole–Cole empirical plot over frequency
range 104 < f < 107 for different values of �, plotted using linear y-axis. φ0 = φp = 0.4. Other
parameter values as in table 1.
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values in the ranges noted. However, the dispersion does show a stronger dependence at lower
frequencies (see figures 11(a) and (b)), albeit at higher values of φp and φ0 than is used to
match the experimental data.

Figures 7(a) and (b) show the effect of increasing the cell membrane capacitance parameter
Cm on the dispersion: ε′ increases as Cm increases at lower frequencies, but this trend is reversed
at higher frequencies. In figure 7(b), the curves for σ (f ) converge to a common plateau value
as f increases, whereas in figure 8(b), which shows the change of σ with σ cyt, the high
frequency plateau value for σ is dependent on σ cyt. Figures 8(a) and 9(a) confirm that ε′ is
less sensitive to the values of σ cyt and σ ecf. Figure 9(b) also confirms that σ ecf does not affect
the value of σ significantly over the range of parameters given. Figures 10(a) and (b) show
estimated best-fit curves, achieved by parameter adjustment within experimentally credible
ranges, justified in table 1. It is important to note that the experimental data used in this
instance are likely to have included contributions from cells other than those found in liver
lobules, whereas the model is based on estimates of parameters from liver lobules only. This
factor will account for some of the observed differences between experimental data and model
predictions.

For the parameter values assumed here, a stronger dependence of ε′, σ on the porosity
φ is noted at the lower frequencies. This trend, and those noted above, reflect the effect that
the emergence of conducting pathways in the tissue has on the overall electrical properties in
the lower regions of the β-dispersion as, in this frequency regime, the capacitive properties
of the membranes offer the highest impedance. The effect on the dispersion of a different
underlying geometric description of the elemental conducting or blocking element, here
deemed to be a rectangular slab, or a different cell geometry (here assumed to be cubic
close-packed) may be studied, and may be based on detailed ultra-structural studies. The
‘blocking’ geometry is associated with a cellular structure, which comprises both membrane
and cytoplasm and is therefore described by both permittivity and conductivity, unlike the
Hilfer analysis (1991), where the blocking unit has zero conductivity.

It is also possible to modify the existing model to include a different form for λ(φ) and, for
example, to estimate a critical value of φ such that λ = λp for larger values of φ. The analysis
also permits a more complex mathematical treatment, based on the integral equation (4), rather
than making the simplifying assumptions that lead to equation (14). Such a treatment might
include a more complex distribution function for µ(φ)—for example, a Gaussian distribution
function—but one which was based more closely on experimental measurements.

This analysis is based on an effective mean field treatment of the electric field in
the tissue, in which an average induced dipole is taken into account for every cell. The
contribution of higher order multi-poles is neglected and each cell is polarized as if it were in
an effective homogeneous field. An alternative approach would be to describe the tissue as an
inhomogeneous medium with particles (the tissue cells) included in a continuous matrix (the
so-called cermet topology). A numerical analysis of this topology, in which the multi-pole
moments developed by the ith particle (cell) due to the interactions with other particles are
expressed in terms of the particles’ dielectric properties, radii and spatial coordinates, is given
by Spanoudaki and Pelster (2001). However, previous work (see, for example, Smye (2001))
indicates that higher order multi-pole interactions are not likely to be significant for most
biological tissues.

As noted in the introduction, possible applications of the model may include describing
the electrical properties of malignant tissue and modelling the behaviour of tissue in which
changes in the water content cause changes in φ and λ. Assessment of the utility of the
model for these clinical applications would need to be preceded by a series of more detailed
experimental measurements of φ and λ, but if validated, it is also possible that solving the
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inverse problem—that is, calculating φ, λ from electrical measurements of the tissue sample—
may yield a parametric description of tissue, which might then be useful in monitoring changes
in tissue over the course of a disease (for example, during tumour progression or response to
therapy).

6. Conclusions

The frequency dependence of the conductivity and permittivity of a biological tissue in the
β-dispersion has been described by a model, which treats tissue as a porous medium. The
analysis uses two parameters, porosity φ and percolation probability λ, to describe the
geometry of the tissue. These parameters provide a method for capturing the key geometrical
features of the tissue that influence electrical properties. In particular, the parameters permit
the statistical distribution of features to be described in a way that is more readily appreciated
than an ab initio mathematical description of the tissue structure. Whilst the model dispersion
relation shows broad agreement with data published on liver tissue as an exemplar, further
experimental work is required to link this theoretical framework to structural measurements
at a cellular level.
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Appendix A

In figure 2, the irregular polygonal shapes denote liver cells, the dark circular areas red blood
cells and the white area extracellular space. Assuming the two-dimensional representation
of the tissue is representative of the three-dimensional distribution of porosity, φ̄ may be
estimated from figure 2 as follows:

• The image is digitized and an image-thresholding tool is then applied to the digitized
image (Matlab v6.1, The Mathworks Inc.) so that

I (n) set to 0 if I (n) < t I (n) set to 1 if I (n) > t

where I (n) denotes the intensity value of the nth pixel (the pixel with the maximum
intensity, nmax, is set to an intensity value I (nmax) of 1) and t is the threshold chosen
to achieve maximum visual delineation between the liver cells and extracellular space.
The result is shown in figure 12, where black pixels denote liver cells and white denote
extracellular space (ignoring the red blood cells).

• From figure 12, the image analysis tool is then used to count the number of white and
black pixels, denoted as Wp and Bp respectively, and the ratio Wp/(Wp + Bp) is estimated
as 0.24. This gives an estimate of the (three-dimensional) porosity φ̄ as (0.24)3/2 = 0.12.

The fraction of space occupied by red cells may be measured by a similar technique and in
this case was estimated as 0.07 but the effect of red cells is not considered separately in this
analysis. λ might also be estimated from this type of image, perhaps based on an analysis of
connections between sides of a unit-cell grid.
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Figure 12. Image analysis of digitized version of figure 2; thresholding undertaken as described
in the text. White pixels denote extracellular space and black pixels denote liver cellular tissue.
The total numbers of white and black pixels are denoted by Wp and Bp, respectively, and the ratio
Wp/(Wp + Bp) is 0.24 for this image. This gives an estimate of the (three-dimensional) porosity
as (0.24)3/2 = 0.12

Appendix B

In the ‘blocking’ geometry, it is assumed that there are no spaces between the cells and that the
cells are arranged as a closely packed cubic array of cells, each of side t. The total capacitance
of the cell Ccell is the series combination of the membrane capacitance C1 and cytoplasm
capacitance C2. Note that owing to the complex permittivity of the cytoplasm these may be
complex quantities. They are given by

C1 = CmA

2
C2 = εcytε0A

t

where Cm is the membrane capacitance per unit area and the factor of 2 is due to there being
two membranes (top and bottom of cell). The combined capacitance is then

Ccell =
(

1

C1
+

1

C2

)−1

= εcellε0A

t

where it is assumed that d � membrane thickness. Substituting and re-arranging gives the
expression

εcell = εcyt

(
1 +

2εcytε0

Cmt

)−1

where the complex permittivity of the cytoplasm εcyt is given by

εcyt = ε′
cyt +

iσcyt

2πf ε0

and ε′
cyt and σ cyt are the dielectric constant and conductivity of the cytoplasm. Similarly, the

complex permittivity of the extracellular fluid is given by

εecf = ε′
ecf +

iσecf

2πf ε0
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where ε′
ecf and σ ecf are the dielectric constant and conductivity of the extracellular fluid. It is

also assumed that ε′
ecf = ε′

cyt. The parameter values are given in table 1.
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