
IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. MTT-25,NO. 1, JANUARY 1977 41

Long-Wavelength Analysis of Plane Wave
Irradiation of an Ellipsoidal Model of Man

HABIB MASNXJDI, MEMBER, IEEE, CARL H, DURNEY, MEMBER, IEEE, AND

CURTIS C. JOHNSON, SENIOR MEMBER, lEEE

Abstract—Expressions are derived for the induced eketric fields in an
ellipsoidal model of man, and experimental animals irradiated hy an
electromagnetic (EM) plane wave when the wavelength is long compared

to the dimensions of the ellipsoid. Calculations of the power absorbed
by an ellipsoidal model of man are given for six different orientations of

the ellipsoid with respect to the incident plane wave field vectors. The
results show that ~e induced fields and the absorbed power in the ellipsoid

are strong functions of frequency, size, and orientation with respect to

the incident EM field vectors. The results for the ellipsoidal model of
man are also compared with those of the prolate sp~eroidal model.

I. INTRODUCTION

A LONG-WAVELENGTH analysis of electromagnetic

(EM) plane wave (perturbation technique) has

recently been developed and applied to prolate spheroidal

models of man and experimental animals [1], [2]. The

results of power absorbed calculations in the prolate

spheroid models of man and some experimental animals

show that orientation of the body with respect to the

incident plane wave vectors is an extremely important

variable which can make an order-of-magnitude difference

in EM power absorption. This strong dependence of EM

power absorption upon orientation has also been observed

experimentally [3]. Experiments have also been conducted

at the School of Aerospace Medicine, Brooks Air Force

Base, to measure the EM power absorption in a 70-kg

saline-filled prolate spheroidal human phantom, twenty

3.5-kg saline-filled prolate spheroidal monkey phantoms,

and twenty live rhesus monkeys [4]. Results of the calcula-

tions for spheroidal model: have been compared with

measurements of power absorbed by saline-filled spheroidal

phantoms, and good agreement between calculations and

measurements has been found. However, agreement

between theory and measurements for live” mlonkeys was

not as good as that for prolate spheroidal phantoms [4].

It was found that a significant difference in power absorption

occurred when the monkeys were rotated 90° about their

long axis. The prolate spheroidal model did not predict

this because a prolate spheroid has circular cross sections

normal to its long axis, whereas for a monkey, or in general

for a primate, cross sections taken normal to the long axis

appear more elliptical than circular. A principal conclusion

from these comparisons is that an ellipsoidal model will
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be a superior representation of primates (man, monkey,

and others), and the prolate spheroidal model seems to be

adequate only for rodents (mice, rats, and others) since

for these species, cross sections taken normall to the long

axis appear approximately circular.

In this paper, the perturbation technique, described in

[1], is applied to analyze the internal fields in an ellipsoid

irradiated by a plane wave for each of the six major orienta-

tions of the incident fields with respect to the ellipsoid.

Expressions for average absorbed power and power

distribution inside the ellipsoid are given. The results’ of

power absorbed calculations in ellipsoidal models of man

are compared with those of prolate spheroidal models.

Curves of power absorption versus frequency show that

the absorbed power is a strong function of size and orienta-

tion of the ellipsoid in the incident fields.

II. FIRST-ORDER INTERNAL FIELDS FOR THE ELLIPSOID

IRRADIATED BY AN EM PLANE WAVE

In this section the perturbation technique is applied to

find the solution of the zeroth- and first-ordler equations

for a plane wave incident on a tissue ellipsoid. ‘The equation

of ellipsoid in the rectangular coordinate system is

x’ y’ z’

7+ F+ 7=1

where a, b, and c are the semiprincipal axes of the ellipsoid

witha>b>c.

Expressions for the internal electric fields and the absorbed

power are given for each of the six primary polarizations:

For convenience in referring to these polarizations, the

following definition of polarization is made. The polariza-

tion is defined in terms of which of the vectors Ei, IIi,

and K are parallel with the three axes of the ellipsoid.

(Ei is the incident electric field vector, Hi the magnetic

field vector, and K the propagation vector.) The vector

parallel to the longest axis is listed first, the one parallel to

the next longest axis is listed second, and the one parallel

to the shortest axis is listed last. Thus EHK polarization

is the one in which the incident electric field’ vector is

parallel to the longest axis (length a), the incident magnetic
field vector is parallel to the next longest axis (length b),

and the propagation vector is parallel to the shortest axis

(length c).

A. Derivations for EKH Polarization

The first polarization considered is EKH polarization.

For this polarization Ei II f and Hi II – 8. Since the per-
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turbation technique has been described in [1], only the

outline of the procedure and the results are given here.

1) Each set of incident, internal, and scattered electric

and magnetic fields is expanded in a power series of ( –jk),

where j = (— 1)1/2 and k is the free-space propagation

constant.

2) Equations for the nth-order field terms are obtained

by requiring the series expansions of the incident, scattered,

and internal fields to satisfy both Maxwell’s equations and

the boundary conditions.

The results for the internal fields are as follows:

VXEO=O (1)

V x E. = qOH._l, n>l (2)

VxHo=crEo (3)

and

Rt = [(~ + az)(~ + b2)(~ + c2)]1/2. (14)

The equations for the zeroth-order scattered magnetic

field HO’ and internal magnetic field Ho are equivalent to

the equations for a conducting ellipsoid in a uniform

magnetic field, and since the ellipsoid is nonmagnetic,

the solutions are HO’ = O and Ho = – 2/qo.

As described in the prolate spheroid derivation [1], the

first-order electric field, El will be written as the sum of

two terms, El = El’ + El”, where

VXE1’=O (15)

V. El’ =() (16)

() 1jj. ~i’= —— A” (Eoi ~+ Eo~ on the surface
aq~

(17)

V“EO=O (5) V x El” = qoHo (18)

( )
V. oE.–~E._l =0, n>l (6) V“E1”=O (19)

no

V“H. =0 (7)
d “ El” = O on the surface. (20)

where k = co~poeo, :, = s/&. (real), a is the conductivity

“o~time variation has been assumed.of the ellipsoid, and an eJ

The equation for curl and divergence of the incident and

scattered fields can be obtained from (1) to (7) by setting

&,=landc=O.

The relations between the nth-order internal and external

fields at the boundary are

n“Eo=O (8)

where A is the outer unit normal vector at the boundary.

The zeroth-order field E. must satisfy (l), (5), and (8),

which are equivalent to the equations for the field inside a

conducting ellipsoid in a uniform static electric field. The

solution is E. = O. The scattered electric field Eos is the

same as the field induced by a conducting ellimoid in a

Since the curl and divergence of El’ are zero, El’ can be

found from El’ = V#l’ where #1’ satisfies Laplace’s

equation. In ellipsoidal coordinates, Laplace’s equation is

given by Stratton [5].

The properties of the ellipsoidal harmonics that satisfy

Laplace’s equation can be found in the literature [6], [7].

The poten{ial #l’ is an ellipsoidal harmonic which is to be

found. First we will write Eoi and Eos in terms of scalar

potentials. Since Eoi = f, we set

Eoi = V~oi = V(X) = V
[

(t + a2)(q + az)({ + az) 1/2
(~2 _ ~2)(c2 _ ~2) 1

(21)

or

@oi = c2.tl(M2(d.f3(o (22)

with ~i(a) = (IX + a2)1/2, (i = 1,2,3 and a = {,q,(), and

C2 = [(bz – aZ)(c2 — a2)] 1/2. Also, we write

Eos = V~os. (23)

From (12) and (23),

—
uniform static electric field. The solution for Eos can be 40s = cLfl(w2(w3(o J: ~~, . (24)
found by using the ellipsoidal coordinates (~,q,[). Eos is

given by Stratton [5] as From (22) and (24),

{
Eos = Cl grad [(< + a2)(q + a2)

J
“(C + a2)]’/z m d~

)

pm:]

(40’ + 407 = c2f’l(nf2(of3(o 1 – g f; ‘g)R~

(12)
~ (< + a2)R< (25)

where where

[ Jcl = – J(& – ~z)(cz – ~z) . m ‘~
o (t + a2)~g 1

“ (13) (26)
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The boundary condition given in (17) can be written as stitution of (37) into the boundary condition given in (20)

. results in

~ “ (v+,’) = – $0 [f “ v(f&’ + (j).’)], ;at<=o ?“F1+?”(V4) =0, at C=O. (38)

or The scalar potential ~ is an ellipsoidal harmonic. In

()

1 c%jl’ = 1
addition, (38) shows that ~ must have the si~me q and L

——

~q(l + ; f~”i + 40’)

.—
h~ 8( <=0

(27) variation as F1. The solution for ~ in this case will have, in

t <=” rectangular coordinates, the form

with ~ = Blxy (39)

h<=:
[

(< - ~)(c ‘- 0 1
1/2

2 (t + d)(t + Z72)(C + C2) “

which is an ellipsoidal harmonic of the second kind [7]. To

find the constant Bl, we substitute the expressions for FI

From (27), it can be seen that @l’ must have the same q and Y ‘nto (38):

and ( variation as (@oi + @oS). We presume, therefore,
% o(yf – xj) + Bl? “ (x$ + J@ = O, at<=O.

that #1’ is a function of the form
(40)

41’ = c39@Y2(v)f3(0. (28)
Now the unit vector t in ellipsoidal coordinates must be

Substitution of (28) into the Laplace’s equation results in related to the unit vectors 3, j, and 2 in rectangular co-

‘4 (’+$?-f+:+%”‘0 ‘2’)
ordinates. This may be done by writing [8]

.+gf 1~=;:=; [;f+& @“ (41)

with RZ given as in (14). The solutions of the preceding

second-order differential equation are

91(0 = (i + a2)1’2 (30)

and

J dc
g2(L) = (t -t- a2)1’2

(< + a2)Rg’
(31)

Only gl(c) is an admissible solution for the internal potential

@l’ because g2(<) is infinite at ~ == – c’ whereas g,(<) is

finite at all points within the surface ~ = O. Therefore,

41’ = C,[(c + C“)(q+ a’)(( + (22)]1/’: (32)

Substituting (32) and (25) into (27) gives

with

(33)

(34)

The expression for 41’ in rectangular coordinates, after

substituting (33) into (32), can be written as 41’ = – 1/

(aqoA1)x, and then El’ can be written as

Substitution of (41) into (40), after a few algebraic steps,

gives B1 = (a2 – b2)/2(a2 + b2). Therefore, the final
expression for El” is

Ellt – a2 b2

a2+b2y~-
XJ?. (42)

a2 + b2

Using the definition that El = El’ + El” and the ex-

pansion series for the internal electrie field,, the electric

field to first order inside the ellipsoid for EKH polarization

is

E = –jk(E1’ + El”)

= –jk[(AX + Czy)f + Bzxj] (43)

where AX = – l/rqoA1, B= = –b2/(a2 + b2), C’, = a2/

(a2 + b2), and Al is given in (34). The expression in (43)

will be used for absorbed power calculation in the next

section.

Expressions for El’,El” and the internal electric field

inside the ellipsoid to first order for the EHK,, KHE, KEH,

HEK, and HKE polarizations are derived by following

the same procedure as described previously for EKH

polarization. The final results for each of the aforementioned

polarizations are given as follows.

El’. –>–~ (35) B, ‘~~~lt~ for the other p~la~i~atio~,y
CnIoA~

EHKPolarization: The incident fields for this polarization
where A ~ is given by (34).

The expression for El”
are chosen to be Ei II f, Hi II j. The internall electric field

is found by solving (1 8)–(20). to first order is

Since qoHo = – 2,

V x E,” = --i.
E = –jk(E1’ + El”) = –jk[(AX + BYZ)A + C+2]

(36)
(44)

For convenience, we set
where BY = a2/(a2 + C2) and CY = – c2/(a2 + c’).

El” = FI + V$. (37) KEH Polarization: The incident fields are E’ IIy, Hi II2.

According to (19), then, V” FI = O and V’+ = O. A
The internal electric field to first order is

solution of FI, by inspection, is FI = +( yt – xj). Sub- E = jk(E1’ + El”) = jk[(Ay + BZX)j + Czy$] (45)
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where AY = – l/aqoA2, with

(46)

BZ, C=, and RC are given previously.

KHE Polarization: The incident fields are Ei II 2, Hi II$.

The internal electric field to first order is

E = jk(E1’ + El”) = jk[(Az + CYX)2 + B@] (47)

where AZ = – l/ISqOA3, with

(48)

BY, CY, and Rt are given previously.

HEK Polarization: The incident fields are Ei II j, Hi II A

The internal electric field to first ~rder is

E = jk(E1’ + El”) = jk[(AY + CxZ)j + BX.2] (49)

where BX = c2/(b2 + C2), and CX = – b2/(b2 + C2).

HKE Polarization.’ The incident fields are Ei II 2, Hi II f.

The internal electric field to first order is

E = –jk(E1’ + ~z”) = –jk[(AZ + BX.)2 + CXZ$].

(50)

The expressions for the first-order electric fields inside the

ellipsoid for each of the six polarizations will be used in

the next section to calculate the power absorbed by the

ellipsoid.

III. ABSORBED POWER CALCULATIONS

For biological applications, it is very important to know

the space density of absorbed energy rate or absorbed

power, expressed in terms of watts per kilogram assuming

a tissue density of 1 g/cm3.

Expressions for the first-order time-averaged specific

absorbed power inside the ellipsoid is found by using the

first-order internal fields given in the previous section. It

should be noted here that these expressions are valid only

if 82 >> 21, which is the case of typical biological tissue at

lower frequencies, &l and 82 being the real and imaginary

parts of the complex relative permittivity, respectively.

The time-averaged specific absorbed power inside the

ellipsoid is given by

P(x,y,z) = @E” E* W/m3 (51)

and the space-averaged specific absorbed power is given

by the volume integral

where

(f(X,Z) =b k – $ – $)”2

and V = 4rcabc/3 is the volume of the ellipsoid.

Using the expressions for the first-order internal electric

fields in (51) and (52) gives the following expressions for

2x

10-61~
20 30

E KH

EHK

KEH

KHE
HEK
HKE

F(?fHz)

Fig. 1. Average specific absorbed power in an ellipsoidal model of
man for the six standard polarizations. a = 0.875 m? volume =
0.07 m3, b/c = 2.0, a = 0.6 mho/m a constant. Incident power
density is 1 mW/crn2.

the time-averaged specific absorbed power and, the space-

averaged specifi~ absorbed power for the six polarizations:

fP(x,y,z) = D[(AX + Czy)2 + B=’x’]

EKH

1 ‘,V=DPX2 -?)

(53)

(54)

(55)

(56)

(5V

(58)

(59)

(60)

(61)

(62)

(63)

(64)

2 2 EO is the peak value of the incidentwhere D = -@EO k ,

electric field, and all the other parameters appearing in

(53)-(64) are given in the previous’ section.

Some of the power absorption characteristics are shown

in the curves in Figs. 1 and 2.

Fig. 1 shows the average specific absorbed power in an

ellipsoidal model of man as a function of frequency for the
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six orientations. As in the case of the prolate spheroidal

model, the strong orientational effect can also ‘be seen from

the figures in the ellipsoidal model, There is approximately

an order of magnitude difference in average specific absorbed

power between the EKH and .HKE polarizations. In

addition, the ellipsoidal model shows the difference in

average specific absorbed power between EKH and EHK,

KHE and KEH, HEK and HKE polarizations, a feature

that has also been observed experimentally in measure-

ments of the average specific absorbed power on monkeys

[4]. This effect could not be predicted by the theoretical

results of the prolate spheroidal model, since the prolate

spheroid has a circular cross section along its major axis.

The reason for the strong dependence of average specific

absorbed power on the orientaticm of the ellipsoid with

respect to the incident electric and magnetic field vectors

can be explained in terms of the electrically and magnetically

induced internal fields. When the longest axis of the ellipsoid

is aligned with the incident electric field, EKH and EHK

polarizations, the magnitude of the internal electric field

approaches that of the incident electric field because the

fields are “mostly” tangential to the boundary and the
boundary conditions require the tangential fields to be

continuous. For the case when the incident electric field is

along the shortest axis of the ellipsoid, KHE and HKE

polarizations, the electric field coupling is much weaker

as again expected from the field boundar-y conditions

because, in this case, the fields are “mostly” normal to the

boundary and the normal boundary conditions require the

internal fields to be weaker. Therefore, the electrically

induced fields can be classified as strong, intermediate, and

weak for EKH and EHK, KEH and HEK, KHE and HKE

polarizations, respectively. The internal electric field

induced by the incident magnetic field forms loops about

the incident magnetic field vector corresponding to eddy

currents, and the strength of this magnetically induced

electric field appears to be in some sense proportional to

the ellipsoidal cross-sectional area perpendicular to the

incident magnetic field. Thus strong magnetic coupling

occurs when the incident magnetic field vector is along the

shortest axis of the ellipsoid. KEH and EKH polarizations.

The magnetically induced fields can also be classified as
strong, intermediate, and weak for EKH and. KEH, EHK

and KHE, HEK and HKE polarizations, respectively.

From the foregoing discussion, one would expect the

average specific absorbed power to be the greatest for the

EKH polarization because both electric and magnetic field

coupling are strong, and the average specific absorbed

power for HKE polarization to be the smallest because both

electric and magnetic coupling are weak. This is indeed the

case as shown in Figs. 1 and 2. The intermediate steps in

terms of absorbed power, EHK, KEH, KHE, and HEK

polarizations, are the result of the various combinations of

electric and magnetic coupling.

Fig. 2 illustrates the normalized average specific absorbed

power in an ellipsoidal model of man for each polarization,

as a function of b/c. Itis interesting to note that the average

specific absorbed power, for the EKH and KEH polariza-

1,5

1,11

1,2

1,0

,8

,6

,4

,2

EHK

t

Fig. 2. Relative absorbed power in ellipsoids as a function of polar-
ization and b/c. a = 0.875 m, volume = 0.07 m3, frequency =
10 MHz, u = 0.6 mho/m.

tions, increases as the b/c ratio increases. This occurs

because the increase in b/c ratio has two eficts. The first

is that the cross-sectional area normal to the incident

magnetic field increases, for the two polarizations, causing

an increase in the strength of the magnetically induced E

field. The second effect is that an increase in the b/c ratio

thins out the ellipsoid and makes it less shielded from the

incident E field and therefore produces a strengthened

electrically induced E field, specially for the EKH polariza-

tion. For b/c = 1, the ellipsoid takes the shape of a prolate

spheroid, and for this value of b/c the results of the calcula-

tions of absorbed power in ellipsoids are the same as those

previously obtained for a prolate spheroid having the same

volume and the same height as the ellipsoid [1].

Theoretical results have also been obt~ined for the

ellipsoidal model of a sitting monkey, with good qualitative

agreement with measurements of power absorbed by live

mon,keys made at Brooks Air Force Base [4]. The relatively

good qualitative agreement between the theoretical and

experimental data indicates that the ellipsoid is a better

model for some experimental animals and :man than the

prolate spheroid.

A better quantitative agreement between the theory and

experiment might be achieved by choosing the optimum

combination of the dimensions of the ellipsoidal model,

a, b, and c, and the electrical properties of the model to
best fit the animal data,

IV. SUMMARY AND CONCLUSIONS

The first-order internal electric fields and specific absorbed

power in ellipsoidal models of man and experimental

animals irradiated by an EM plane wave have been obtained
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for the case when the wavelength is long compared to

dimensions of the ellipsoid a/2 <0.1. The expressions for

the internal fields and specific absorbed power, and the

curves of specific absorbed power versus frequency, show

that the internal electric fields and the specific absorbed

power depend on the body’s dielectric properties and

geometry, as well as the frequency and polarization of the
incident wave.

Comparison of the theoretical specific absorbed power

in prolate spheroidal and ellipsoidal models with the cor-

responding experimental data on live monkeys indicates

that the prolate spheroidal models are not adequate for

primates, although they may be for rodents since their

cross sections taken normal to the long axis appear to be

approximately circular. However, for primates, with

approximately elliptical cross sections, the ellipsoidal

model would obviously be a superior representation.

The expressions for the internal electric fields, specific

absorbed power, and space-average specific absorbed power

should prove to be very valuable in studies of radiation

hazards to man for the long-wavelength case. A very

important application of this analysis will be in the extra-

polation to man of the results of animal experiments

involving biological effects due to EM radiation. Since the

results of this analysis show marked differences in EM

absorption characteristics for man compared to that of

animals at the same frequency and same incident field

level, in extrapolating animal effects to man it will be

necessary to relate the biological effects to the internal fields

or power absorption and then relate the internal fields or

power absorption to the incident fields.

In a future communication, we will apply this analysis to

obtain data showing the internal specific absorbed power

distribution and average specific absorbed power in different

test animals and different human body types.

APPENDIX

The constants Al, AZ, and zt~ occurring in (34), (46),

and (48) are related to serniprincipal axes of the ellipsoid

a, b, and c, and to the incomplete elliptic integrals of the

first and second kinds [9]. These relations are as follows:

Al = abc
(

[F(#,k) - E(@,k)]

[(az – bz)(az – ~’)11’] )
(Al)

Az = abc(a’ – C2)112

“[
[E(fj>k) – (b’ – C’)qfh,ky(a’ – L+)

1

– ak’ sin + cos ~lb] (A2)

[(a’ - b’)(b’ - c’)]

As = abc
[

[b tan ~/a - E(q5,k)]

[(b’ – C’)(CZ2 – C’)’/’] 1 (A3)

with

F(&k) =
J

+(1 – k’ sin’ 0)-’/2 d6’ (A4)
o

E(+,k) =
J

@(1 – k’ sin’ 6)1/2 dO (A5)
o

and

a’ -

()

b’ 1/2

k= —
a’ - c’

()~ = sin-l a’ _ C2 II,
a’

(A6)

(A7)

where F(c#r,k) and E(@,k) are the incomplete elliptic in-

tegrals of the first and the second kinds, respectively.

In this Appendix we made use of the customary symbol k

for modulus of these elliptic integrals, and it should not be

confused with the parameter k used for the free-space

propagation constant in the main body of this paper. It can

be shown that the order of the relative magnitude of the

constants A ~, AZ, and A ~ is the inverse of the order of the
three parameters a, b, and c. That is, if a > b > c, then

Al < A2 < As. Furthermore, one finds that Al + A2 +

A3 = 1.
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