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Lcm@/VavelengthAnalysisof Plane Wave ki-adiation

of a prolate Spheroid Model of Man

CARL H. IIURNEY, MEMBER, IEEE, CURTIS c. JOHNSON, SENIOR MEMBER, IEEE, AND HABIB MASSOUDI

Abstract—An electromagnetic (EM) field perturbation technique
is used to find internal electrical fields and the absorbed power of a
prdlate spheroid being irradiated by a plane wave when the wave-
Ien@ is long compared to the dimensions of the spheroid. The
results show significant differences in the power absorption paherns
with changes in the orientation of the spheroid with respect to the
incident EM fields. Calculations Of the power absorbed by a prolate
spheroid model of man are given.

I. INTRODUCTION

I N the investigation of electromagnetic (EM) power

absorption in man, it would be desirable to perform

a rigorous theoretical arhlysis corroborated by measure-

ment of electric field intensity at any specified tissue site

in the body. As a first step in this direction, a tissue sphere

has been analyzed by Johnson and Guy [1], Anne et al.

[2], Shapiro et al. t3], I1ritikos a~d Schwan [4], Lin et al.

[5], and Joines and Spiegel [6]. Results of these analyses

show that there cafi be large spatial variations in the

electric field and absorbed power in the tissues as a function

of sphere radius and frequency. These theoretical results

have been confirmed by thermographic camera photo-

graphs of irradiated phantom models [1], [5]. Based on

these indications, it is expected that tissue field and power

deposition in man will vary greatly with frequency, body

corifiguration, and orientation, thus complicating the

Quantification of EM power absorption. Yet obtainiag

knowledge of the details of internal power absorption is

essential in order to extrapolate animal data as an indica-

tion of hazard to man.

This leads then tu the urgent need for analytical tools

to describe power absorption patterns in realistic models

of man and experimental animals. A model more realistic

than the sphere for the human body and many animal

bodies is the prolate spheroid. A general field solution to

the prolate spheroidal boundary problem is extremely
difficult, but solutions for iow lwt are ‘tractable using the

perturbation theory described by Van Bladel [7]. One

advantage of the perturbation theory is that it avoids

solution of the ELI wave equation and requires instead
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only the solution of equations which are similar to the

static equations. Thk is a significant advantage because

the mathematical functions in the solutions to the static

equations are more familiar and easier to worli with than

the spheroidal functions. Another advaritage of perturba-

tion theory is that it lends itself more easily to physical

interpretation of the results and allows easier gener-

alization.

In this papei, the perturbation theory is first described

and the results for a sphere [7] compared to the approxi-

mate Mie theory of Lin et al. [5]. Then the perturbation

technique is systematically applied to analyze the internal

fields in a prolate spheroid irradiated by a plane wave for

each of the three major orientations of the incident fields

with respect to the spheroid. Curves of power absorption

versus frequency show that the absorbed power is a strong

function of orientation of the spheroid in the incident

fields.

II. DESCRIPTION OF THE

PERTURBATION THEORY

The method outlined here follows closely that of Van

Bladel [7]. The situation considered is that of an incident

wave impinging upon a scattering body, as shown in

Fig. 1. The basis of the perturbation theory is the expan-

sion of each set of fields, interior, incident, and scattered,

in a powers series in —jk, where k is the free-space propaga-

tion constant. Accordingly, we write

E = &-jl~)m
.=O

E’= j E.’(–j?c)”
E=O

ES = ~ E.’( –j?)”
.=~

where E, Ei, and ES are the interior, incident, and scattered

fieids, respectively, with similar expressions for the mag-

netic fields. Each set of fields must satisfy Maxwell’s

equations, Thus the interior fields must satisfy

v X E = ~o(–jk)H

VXH=aE-~”E
70
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Fig. 1. The basic situation treated inthk paper, an incident wave
impinging upon ascatterer resulting unscattered fields.

v*H =0

(V.aE-w’E =0
no )

where

no = (#o/co) 1’2

k = u(p,eo) 1/2

e, = C/co (real)

and exp (jd) time variation has been assumed.

Substituting the series expansions for E and H into these

equations and equating coefficients of like powers of —,jlc

results in the following set of equations

vXEo=O (1)

v x En = ~OHn.1 nzl (2)

vxHo=uEo (3)

vXHn=uEm–~En.l n>l (4)
Vo

V.EO = O (5)

( )v . aEn – 5 En.l =0 n>]
70

(6)

v.Hm = O. (7)

Following a similar procedure for the scattered fields

results in

VXE08=0 (8)

v X En’ = ~oHn_lS (9)

VXH08=0 (lo)

V x HnS = – ~ En_ls (11)
Vo

v. Ens = O (12)

v.HnS = O. (13)

The power-series expansion for the incident fields is

assumed to be known.

JVith the restriction that the scatterer is nonmagnetic,

the boundary conditions are

(ii.(7— *)E ““(-%?‘E’+ES)

where ii is the outer unit normal vector at the boundary.

Substituting the power-series expansions into these bound-

ary conditions and equating coefficients of like powers of

–-.I% gives us

fi. Eo = () ( 14)

(15)

ii XE. =ii X@n~+EnS) (16)

H. = H.i + Hns. (17)

Along with the series expansion of the incident fields,

equations ( 1)– ( 15) constitute the formulation of the

problem. In addition, the conditions on the scattered

fields at infinity must be known. Van Bladel [7] has

shown that the first two terms in the expansion of the

scattered fields are of order l/rz and hence vanish at

infinity. Thus the formulation is complete, and the next

step is to apply the perturbation method. Before investigat-

ing the power absorbed by a prolate spheroid, we shall

briefly compare the results obtained by perturbation

theory for a sphere with the results obtained by the long-

wavelength approximation of the NIie theory.

Consider a plane wave with fields

m ( –jkzJ) n .
Ei = exp (–jk~); = z n, z (18)

.-o

incident upon a sphere with conductivity u and relative

permittivity e,. $i and ; are unit vectors in the x and z

directions, respectively.

The total first-order field inside the sphere as derived

by Van Bladel [7] is

From the long-wavelength approximation to the IWie

theory [5], the approximate field inside the sphere is

where e’ — je” is the complex relative permittivity. Since
e“ = U/OCo, the two expressions are equivalent when e’ is

small enough compared to d’ to be neglected, as it is in
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the case of typical biological tissue at lower frequencies.

The difference between the two approximate values for the

electric field apparently results from the difference in the

methods of approximation. Numerical calculations for the

sphere show that the results obtained by the perturba-

tion theory are a good approximation to the exact results

of the Nlie theory for long wavelengths.

III. FIRST-ORDER FIELDS FOR THE

PROLATE SPHEROID

In this section, the solution of the zeroth- and first-order

equations for a plane wave incident on a prolate spheroid

are described. Solutions are given for each of the three

primary polarizations, and solutions for any polarization

can be constructed from these. For convenience in referring

to the three primary polarizations, the following definitions

are made.

Magnetic polarization—the magnetic field vector of the

incident plane wave is parallel to the’ major axis of the

spheroid.

Electric polarization—the electric field vector of the

incident plane wave is parallel to the major axis of the

spheroid.

Cross polarization—the electric field vector and the

magnetic field vector of the incident plane wave are both

perpendicular to the major axis of the spheroid.

A. Magnetic Polarization

The coordinate system with respect to the prolate

spheroid is oriented as shown in Fig. 2. The first polariza-

tion considered is magnetic polarization, in which the

magnetic field of the incident plane wave is parallel to the

major axis of the spheroid. Accordingly, the fields of the

incident plane wave are chosen to be

E’ = exp (–jk~)~ = ~ ~ (–jky)”/n! (21)
~=o

H’ = –exp ( –jky);/vO = ( –;/m) ~ ( –j?cy) “/n!.
.=O

(22)

The zeroth-order field must satisfy (1), (5), and (14),

which are equivalent to the equations for the field inside

a conducting spheroid in a uniform static electric field.

The solution is E. = O. Similarly, HO = –;/qo, since the

spheroid is nonmagnetic.

The electric field EO’ + EOSis the field resulting from the

conducting spheroid in a uniform field. This solution will

be found by using normalized prolate spheroidal coordi-

nates (ul,vl,@) defined by

U1 = ?.6/1

VI = v/1

where (u,v, @) are the prolate spheroidal coordinates

related to cylindrical coordinates (r,&z) by

r = (UZ — p) uz(p — Vz)1/2/1 (23)

4-----,----.
b

Y

/“”
d

x

Fig. 2. Orientation of the coordinate system
prolate spheroid.

z = uv/1

with respect to the

(24)

The spheroid is generated by revolting an ellipse about its

major axis, and 21 is the distance between the foci of the

ellipse. The major and minor axes are 2a and 2b, respec-

tively, and the eccentricity is 21/2a. The constant-u

surfaces are ellipsoids of revolution and the constant-v

surfaces are hyperboloids of revolution. Fig. 3 shows the

unit vectors ~ and $ at one point in the yz plane. The unit

vector & is the same as in a cylindrical coordinate system.
The unit vectors in spheroidal coordinates may be

related to the unit vectors %, $, and ? in rectangular

coordinates by [8]

1 dr

u ‘;7U

. 1 drv=——
h, tk)

(2,5)

(30)

In order to find EI,EOS must be found. This can be ac-

complished by following a procedure similar to that used

by Van Bladel [7] to find the solutions for a dielectric

spheroid in a uniform field. Since EO~= ~, Eoi = — V ( — X)

where z = r cos o = 1cos @[(ulz — 1) (1 — V12)]1/2. Thus

we can set

Eoi + EO’ = – V (@oi + @o”)
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Fig.3. The6and$ vectorsat onepoint inthevz plane.

where

%~ = –lcos@[(ulj – 1)(1 – V12)]112

and @OSmust satisfy Laplace’s equation since V.(Eo’ +

Eos) = O. The boundary condition is that O.’ + @osmust

be constant on the surface UI = uIO, and without loss of

generality, we can choose that constant to be zero. The

solution to Laplace’s equation in prolate spheroidal

coordinates is [7]

where P.m and Q.m are associated Legendre functions of

the first and second kinds, respectively. Since the boundary

condition requires that

%~ + %’ = o at the surface defined by U1 = u1O

OOsmust have the same VI and o dependence as @oi. Hence

we can choose one term out of the series in (31) which will

satisfy the boundary condition. Accordingly, w-e set

@o’ = Z& cos &’ll(@ QI1(uJ = Ah COS @(l – ~lz) ‘/2Q1’(Ul) .

Since Ql (uJ ~ O as U1~ ~, this solution also satisfies

the condition at infinity. Requiring %4 + %S to satisfy

the boundary condition and solving for the constant Ah

gives

A, = Z(U,02 – 1) ‘/2/Q/ (U,o)

and

q)~ + %’ = –1 Cos +(1 – @) 112[(U12– 1) 1/2

– (Ulo’ – l) ’I’Q,l(u,) /QIl(u,o) ]. (32)

To facilitate physical interpretation, we shall follow

Van Bladel [7] and write El as the sum of two terms,
El = El’ + El”, where

VXEI’=0

v.EI’ = O

ii. aE1’ = —ii. (Eoi + Eos) /vo

(33)

(34)

on the surface (35)

249

v x El” = ~oHo (36)

v.EI” = O (37)

iio EI° = O on the surface. (38)

Since the curl and divergence of El’ are zero, El’ can be

found from El’ = – V%’ where %’ satisfies Laplace’s

equation. Then the boundary condition given in (35)

can be written, using the definition of the gradient, as

(39)

From this relation, it can be seen that 01’ must have the

same VI and ~ variation as $0%+ +Os. Choosing the ap-

propriate term from (31 ), we get

*I’ = –Bhl Cos +(U12 – 1) 1/’[( 1 – 012)]1/2/uqo

where Bh is an arbitrary constant, and the uqo term has

been included for convenience. Requiring this to satisfy

the boundary condition in (39) results in

B~ = ~[UIO2 – 1]-1[’ulo2/ (U102 – 1)

– (1/x)uIo h [(u,o + 1)/(u,o – 1)]]-’ (40)

where we have used

QJ(ulo) = (U102– 1) ‘12[UW’ (h? – 1)

– (1/2) in [(UIO + 1)/(uIo – 1)]] (41)

+Q1l(u) = [’U,O’ – 1]-’1’[(U,O2 – 2)/ (U1”2 – 1)
U1=UI(I

– (1/2) in [(u,. + 1)/(u,o – 1)]]. (42)

Noting that @l’ in the preceding can be written as

@l’ = —BhX/’r.r?lO,then El’ can be written as

El’ = –B#uVO (43)

where Bk is given by (40). This result is similar to that

obtained for the sphere, w-here the electric field inside the

sphere induced by the electric field of the incident wave

is also uniform. Furthermorej it can be shown that

Bk 43 as U1O-+ @, and then (43) reduces to the value

for a sphere (if the difference in polarization is accounted

for). Note that since

Ulo = a/ (az — bz) 112 (44)

the limit as u1O- @ corresponds to the limit as b ~ a,

which takes a spheroid into a sphere. The limit of (40)

can be found without difficulty by first expanding the

in terms in an infinite series and then taking the limit.

It remains now to find the El” which satisfies (36)–(38).

Since mHO = – ~,

v x El” = –;.

By inspection, a particular solution to this equation (in

cylindrical coordinates) is
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A

E,’’=–:.

Since this also satisfies (37) and (38) (~isparallel

(45)

to the

surface), it is the solution. In rectangular coordinates,

El” = (~– zj)/2, and it is easy to see that this is

equivalent to (19) for the sphere if the change in polariza-

tion is taken into account. Since the spheroid has the same

kind of symmetry as the sphere when the magnetic field

lies along the major axis of the spheroid, the interior electric

field induced by the magnetic field has the same charac-

teristics in the spheroid as in the sphere.

The electric field to first order inside the spheroid for

magnetic polarization with the incident E in the x direction

and incident H in the —z dhection is

E = –jlc(E,’ + E,”) = B&[-ja/coc,]-’ – jtk(y~ – z~)

(46)

with l?~ given by (40). Thk expression will be used for

power calculations in the next section.

B. Electric Polarization

Using the same orientation for the coordinate system

with respect to the spheroid as shown in Fig. 2, the solution

for electric polarization with the incident plane wave

fields given by (18) and (19) is described next following

the same basic approach used for magnetic polarization.

As in the two previous cases, EO = O, and since the

spheroid is nonmagnetic, HO = ~/m. To find EOi + E#,

we can use

Eot + EOS= –v(%~ + %’) = –V(–l’wh + w)

since Eo’ = — V ( —z) and z = lUIV1. Since the boundary

condition is again ( @Oi+ %s) = O when U1 = U1O, @Os

must have the same VI and @variation as @Oi.Choosing the

appropriate term from (31 ), we get

%’ = A.VIQ1 (Ul)

where A. is a constant to be evaluated from the boundary

conditions. Solving for A. gives

A, = ko/QI(u Io)

and therefore

Ooi + @o’ = – Zulvl + 1u1ov1Q1(u1) /Q1 (Ulo) . (47)

Now El’ can be found by solving (33)– (35) using El’ =

– v4’. As before, the boundary condition in (3.5) requires

that @’ have the same V1 and 4 dependence as ‘To; + @OS.

Hence the appropriate form of @ as obtained from (31) is

@.’ = – BJuIvJu70

where B. is to be found from the boundary conditions.

Solving for Be from (35) gives

B. = [U102– 1]-l[(UIO/2) In [(u1o + 1)/(u10 – 1)] – 1]-1

(48)

so that El’ is given by

El’ = –Bj/uqo (49)

since luIv1 = z. Again it should be noted that since

lim Be = 3
Ulo-m

(49) reduces to the corresponding expression for a sphere.

The expression for E,” is found by solving (36)–(38).

For this polarization, (36) becomes

vXEI’’= ii

which can be solved by setting

El” = y; – V@”

where y; is a particular solution obtained by inspection,

and Q“ is a function which must satisfy Laplace’s equation

because v. El” = O and V o@ = O. In addition, E{’ must

satisfy the boundary condition given in (4),

ii. EI° = y;. ii – v@’.ii = o when UI = ZM (50)

where i is a unit vector perpendicular to the surface of

the prolate spheroid formed by UI = uIO. The quantity

y;.~ may be evaluated using y = r sin@, (23), (25), and

(28). The result is

y;.ii = (l/hl) (U12 – 1) 112(1 – VIZ)l/2vl sin @

where

hl = (Z@ – VJ’) 1/2/ (Z@ – 1) 1/2.

(hTote that this hl is the h, for the unnormalized coordinates

(u,v,@) as obtained from (28)-(30) written in terms of the

normalized coordinates. ) Consequently, the boundary con-

dition in (50) requires

(l/hl) (d@”) &ul) = (l/hl) (U12 — 1) 1/2(1 — V12)l/2vl sin @

at u, = U,o. (51)

Thus 0“ must have (1 – V12)112VIsin @ variation, which

may be obtained from the m = 1 terms in (31). Also

since PJ (VI) = 3VI ( 1 — V12)l/z, the n = 2 term is the

appropriate one. Thus we choose a solution

0“ = C8P21(UI) Pa’(vi) sin@

where C. is a constant to be determined from the boundary,

condition in (51). Evaluating C. and converting back to

rectana-lar coordinates gives the final expression for El”

for electric polarization

El” = U~02@/ (2u~02 – 1) + .?; ( 1 – u102)/ (~u102 – 1).

(52)

Once again, as UIO -+ co, El” reduces to the proper value

for a sphere.

The electric field to first order inside the spheroid for

electric polarization with the incident E in the z direction

and the incident H in the x direction is
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E = –jk(EJ + E,”)

= B.i[–ju/@co]–l –jk[ulo2~i/(2u102 – 1)

+ (1 – u,o’)zj/(2u,o’ – 1)] (53)

with Be given by (48).

C. Cross Polarization

For cross polarization, the incident fiekk are chosen to be

The integial has been written in terms of cylindrical

coordinates because the integration is easier in cylindrical

coordinates.

Using in turn (46), (53), and (57) in (58) gives the

following expressions for power densities for magnetic,
electric, and cross polarizations, labeled 6’~, P,, and P,,

respectively

@~ = &k2[(BIJUq,) 2 – (BIJ2aq0) r sin @ + r’/4] (60)

(P, = $uk2[(BJuvO) 2 – 2B,azr sin @/&qO (a2 + b2)

+ a4r2 sin2 @/(a2 + b’)’ + b4#/(a2 + b’)z] (61)

6’, = ~uk2[ (BC/aVO) 2 – 2BCb2Z/Uv0 (a’ + b2)

H’ = (~/~J ~ ( –Jcz) “/n!. + b4z2/ (a’ + b2)2+ a4~2 COS2 @/(a’ + b2)’] (62)
~=o

Following the same procedure as described in the preceding
where (44) has been used and the conversion to cylindrical

for magnetic polarization and electric polarization results
coordinates has been made. The integration to find the

total time-average absorbed power density is straight-
en the following expressions for El’ and El”

forward and gives the followifig results

El’ = –BC~/aqo (54) Ph = ~ukz[(BjL/uqo) 2 + 152/10] (4/3) ~abz (63)

E,” = u102z~/(1 – 2U102)– (U102– 1) 2~/(1 – 2U102) (55) P, = &k2[(BJuqo)2 + a2b2/.5 (a2 + b’) ](4/3) ~ab’ (64)

where P, = ~Uk2[(BC/UqO) 2 + a2b2/5(a2 + b2) ] (4/3) ~ab’. (65)

B. = 2 (U102 – 1) ‘1[u102/ (uloz – 1) Some of the power absorption characteristics are shown

– (uIo/z) in [(UIO + 1)/(uIo – l)]]-’. (56)
in the curv~s in Figs. 4 and 5. Fig. 4 shows the average

absorbed power density (total power absorbed divided
Note that B. = Bh since, in each case, the electtic field by the v~lume) for each polarization along with that

is perpendicular to the major axis. The electric field inside absorbed by a sphere P., as A, function of frequency for

the spheroid to first order for this cross polarization is the indicated parameters. The expression for P, is obtained
then by integrating (20) and is

E = – jk(E1’ + E,”) P, = &#[(3/uqo) 2 + ?l/lo] (4/3) 7rTo3 (66)

= BC~[ –ja/coq]-’ – jk[um2@ ( 1 – 2um2)

– (U,o’ – l)2i/(1 – 2’U,O’)]. (57)

Having thus obtained the first-order dectric fields

inside the spheroid for each of the principal polarizations,

we can now proceed to calculate the power absorbed by

the spheroid.

IV. ABSORBED POWER CALCULATIONS

With the expressions ‘for the first-order interior fields

that were obtained in the previous section, the first-order

calculation of the absorbed power density and the absorbed

total power inside the spheroid is straightforward. The

time-average absorbed power density is given by

@ = $uE. E* (58)

and the total time-average absorbed power is given by the

volume integral

where

f(z) = (b2– b2.z2/a2) ‘/2,

where r. is the radius of the sphere. The calculations are

made for the case *here thti spheroid and sphere have

equal volumes, i.e., (4/3) mt3b2= (4/3) mro’, and for an

incident power density of 1 mW/cmz. The dimensions of

the spheroid are chosen so that the size of the spheroid

approximates that of a man and the conductivity and

permittivity used for human tissue are those given by

.Johnson and Guy [1] and Schwan [9].

Lin et al. [5] demonstrated from the NIie solution for

a sphere that power absorption due to the ificident electric

and magnetic delds can be identified separately. For the

prolate spheroid, an additional cross product term appears,

but we will use the concept of power absorption induced

separately by incident E and H fields in the arguments

which follow. It is interesting to note that the power

absorbed for electric polarization is higher than that of

the, corresponding sphere, while for cross polarization and

magnetic polarization, it is lower. There is a factor of

five to ten difference in the power absorbed for electric

polarization compared to magnetic polarization for the

conditions of Fig. 4.

l~or electric polarization, the incident electric field is

tangential to the long axis of the spheroid, and the field

boundary conditions thus require the magnitude of the
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,0-6

5345 10 20 36

Frequency id MHz

Fig, 4. Average abstn-bed power density by a muscle prolate
spheroid for each of the three polarizations, electric (P.), mag-
netic (P~), and cross (P.), and for a sphere (P, ) with an incident
~o~~density of 1 mW/cm2, a = 1 m, a/b = 7.73, volume =

. .

I
12345 6789 10

a/b

Fig, 5, Total absorbed power of a0.07-rn3muscle prolate spheroid
normalized to that of a muscle sphere of equal volume for each
of the polarizations as a function of the ratio of the major axis to
theminor axis of the spheroidal 10 MHz.

inteimal electric field to approach that of the incident

electrie field. For cross or magnetic polarization, the

incident electric field is perpendicular to the long axis of

the spheroid, and the field boundary conditions require

the internal electric field to be reduced by a factor like

1/ (c, + ti/j~eO), which is, a small number. Thus the in-

cident electric field is strongly coupled into the spheroid

only for electric polarization. The internal electric field

induced by the incident magnetic field forms loops about

the incident magnetic field vector and increases in strength

with the amount of incident magnetic flux intercepted by

the spheroid. Hence the magnetically induced internal elec-

tric field is stronger for electric and cross polarization, where

the incident magnetic field is along the minor axis and

more magnetic flux is intercepted, than it is for magnetic

polarization. Consequently, P, is greatest because of

strong electric and strong magnetic field coupling, F’, is

intermediate because of strong magnetic coupling but weak

electric coupling, and Ph is smallest because of weak

electric and weak magnetic f@d coupling.

If this qualitative explanation is correct, the differences

between P.j P., and Pk should increase as the spheroid

becomes longer and thinner. This does happen as shown

by the curves in Fig. 5, where the total absorbed power

for each polarization is shown normalized to the total

power absorbed by a sphere of equal volume and plotted

against the ratio a/b.

These results are in good qualitative agreement with

measurements of power absorbed by a saline-filled rectan-

gular box in a large transmission line which simulates

a plane wave, made b y Allen [10], and with measurements

of power absorbed by prolate spheroid phantom tissue

models in a transmission line, made by Gandhi [11].

V. SUIJfillARY AND CONCLUSIONS

Perturbation techniques have Been applied to obtain

the first-order internal electric fields and absorbed power

for plane ivave irradiation of a prolat~ spheroid model of

man when the wavelength is long compared to the dimen-

sions of the spheroid. Power calculation based on these

results show a striking change in absorbed power with a

change in orientation of the spheroid in the incident fields-

The expressions for absorbed power density and ab.

sorbed total power should ptove to be very useful in

studies of radiation hazards to man. ~or example, the

results of this analysis clearly indicate the importance of
the incident magnetic field and of the orientation of the

absorbing body in the incident fields with respect to the

power absorbed. Another very important application will

be in the extrapolation of the results of animal experiments
involving radiation effects to man. Since the absorbed

power in a given radiation field varies with the size of the
absorbing bodyj in extrapolating animal effects to man it

will be necessary to relate the biological effects to the

internal fields or power absorption and then relate the

internal fields or power absorption to the incident fields.

This kind of analysis should be very valuable in establish-

ing such relations for the long=wavelength case.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, FEBRUARY 1975 253

There are many dh-ections in which this analysis might

be extended, some of which are in’progress. One extension

would be to that of the power absorbed by an object in

near fields, rather than plane wave fields. Another is to

analyze the power absorbed by an oblate spheroid, which

is a better model of some animalsj such as the turtle and

perhaps the rabbit, than the prolate spheroid. Also ‘the

oblate spheroid analysis could be applied to the po~~er

absorbed by some kinds of cells. Another application might

be the calculation of power distribution in a physiological

solution containing cells in a petri dish. The range of

frequency for w~lch the results are valid should be exam-

ined carefully? and the possibility of increasing the range

of validitv through higher order terms explored. Verifica-

tion of ~he anaiysis “should be made

measurements.
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Short papers

Design Equations for an Interdigitated Directional Coupler

WEN PIN OU, MEMBER,IEEE

Abstract—General design equations for an interdigitated direc-
tional coupler are derived. The design equations are written in
terms of eyen- and odd-mode admittances for a pair of coupled lines

which we identical to any pair of adjacent lines in &e coupler. The

calculated values of even- and odd-mode admittances can be trans-

lated into a physical configuration from published data on coupled

line5.

I. INTRODUCTION

Because of the advantages of broad-band, low loss, and tight

coupling available in simple planar structures, the use of inter-

digitated structure m a directional coupling scheme has gained

popularity among design engineers in recent years. Lange [1] first

reported a 3-dB interdlgit ated microstrip hybrid in 1969. Later, in

1972, Waugh and LaCombe [2] constructed an “unfolded” version

of a 3-dB Lange coupler and demonstrated that the performance is

essentially the same as that of the Lange coupler, thus providing

flexibility in geometrical layout of microstrip circuits. The exten-

sion of the interdigitated structure to a more loosely coupled direc-

tional coupler was recently reported by Miley [3].
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While the circuit has been fabricated and put into practical appli-

cations, unfortunately no general design method for interdigitated

couplers has been published. Thus a designer is forced to use a trial-

and-error approach to achieve hk design objective. Thk short paper

attempts to fill this gap by giving a theoretical treatment of the in-

terdigitated structure. General design equations for a directional

coupler are derived, which, in turn, can be translated into a physical

configuration by using published data available in the literature.

II. ARRA1” OF PARALLEL—COUPLED LINES

Consider first an array of k parallel-coupled TEM lines as shown

in Fig. 1. It is assumed that the physical dimensions of each line are

identical, so are the spacings between the lines. The total number of

lines k is assumed to be even. Generally, there are couplings in exis-

tence between any pair of lines. However, for mathematical sim-

plicity and practical consideration, only the couplings between the

adj scent lines will be considered. ‘The neglect of nonadj scent cou-

plings is not a serious limitation in many practical applications, as

pointed out by Matthaei [4]. Though not exact, the assumption of

TEM mode provides good approximation for microstrip, as will be

seen later from comparison of theoretical results and empirical

data.

The current and voltage relation for such an array of transmission

lines may be written as follows:

m +1 m +1

I ~a=— j cot !9 ~ Y.mvn. + j’ Csc e ~ Ymnv71b (1)


