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Abstract
This paper presents a simple analytical expression for the effective complex conductivity of a
periodic hexagonal arrangement of conductive circular cylinders embedded in a conductive
matrix, with interfaces exhibiting a capacitive impedance. This composite material may be
regarded as an idealized model of a biological tissue comprising tubular cells, such as skeletal
muscle. The asymptotic homogenization method is adopted, and the corresponding local
problem is solved by resorting to Weierstrass elliptic functions. The effectiveness of the
present analytical result is proved by convergence analysis and comparison with finite-element
solutions and existing models.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This work presents a mathematical model of a biological
tissue comprising tubular cells, such as skeletal muscle,
and is aimed at determining the relationships between its
effective dielectric properties and the properties of the
constituent phases. This issue may be of significance to many
applications for noninvasive diagnosis and treatment, such as
electrical impedance tomography [1,2], body composition [3],
dialysis [4], radio-frequency hyperthermia and ablation [5].

The dielectric properties of tissues vary as a function
of frequency: experiments show indeed three dispersions, α,
β and γ , mainly attributed to different relaxation processes:
ionic diffusion, interfacial polarization and dipolar orientation,
respectively [6]. The β dispersion, considered herein, takes
place in the radio-frequency range and principally arises from
the capacitive charging of cellular membranes, known as the
Maxwell–Wagner effect.

Different phenomenological relaxation models are
available in the literature, ranging from the one-pole Debye
model [7] to the famous Cole–Cole model [8], to recent
parametric models [9, 10]. Equivalent-circuit models can also

be found (e.g. [11–13]), but they pose the problem of parameter
identification [14, 15].

Micromechanical approaches allow one to derive the
effective (or equivalent) dielectric properties of the tissue
from the properties of the constituent phases and to take
into account microstructural details. Numerical solutions
of the corresponding homogenization problems, based on
finite element [16], boundary element [17], finite difference
[18, 19] or transport lattice [20] methods are suitable, though
in general computationally expensive. Analytical solutions
[21, 22] have been obtained by introducing simplifying
assumptions (e.g. dilute or differential schemes [23]), leading
to closed-form results. Exact analytical solutions are more
involved, and different mathematical methods have been
developed to address the associate boundary value problems,
characterized by partial differential equations with rapidly
oscillating coefficients arising from the description of the
microstructure.

In this work, the problem of the electrical conduction
in a tissue comprising aligned tubular cells is studied, and
the effective complex conductivity in the plane orthogonal to
the fibres is obtained. An idealized model of the tissue is
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considered, composed of a periodic hexagonal arrangement
of conductive circular cylinders embedded in a conductive
matrix, with interfaces exhibiting a capacitive impedance,
taking into account the dielectric behaviour of cell membranes.
A rigorous, analytical solution to the homogenization problem
is provided by employing the asymptotic homogenization
method [24, 25], whose central step is the solution of the
so-called cell (or local) problem (equations (17)–(19)). In
most cases, numerical techniques are needed; here, it is
solved in closed form, making use of Weierstrass elliptic
functions [26–28].

A related approach was followed by other authors to
compute the effective elastic properties of composite materials
with a regular structure [29, 30]. Other relevant citations
are: [31, 32], based on the Rayleigh identity and devoted to
effective transport properties of a regular array of cylinders;
[33], dealing with a doubly periodic parallelogrammic array
of elastic cylindrical inclusions embedded in an elastic matrix;
[34], studying the effective response of a periodic fibre
reinforced material to SH wave propagation.

In the cited literature, the unknown fields were continuous
across the interfaces. This is not the case in this work,
dealing with interfaces exhibiting a capacitive impedance,
which causes a jump in the electric potential. Related problems
were treated in [35, 36], involving interfaces with an inherent
electric or thermal resistance, and in [37, 38], dealing with
interfaces having a lumped elastic compliance. Particularly
relevant to the present work is [35], where a closed-form
formula for the effective thermal conductivity of a square array
of cylindrical inclusions was derived.

The following solution strategy is adopted here.
The unknown is represented, in the fibres and in the matrix, as
the real part of an analytic function (equations (23) and (24)),
thus satisfying the harmonic field equation. Then, the interface
conditions are exploited in order to link the fibre and matrix
expressions. Finally, the solution in the matrix is represented
by resorting to Weierstrass elliptic functions in order to account
for the periodicity conditions (equation (30)). The solution of
the cell problem results from the identification of the two series
representations in the matrix. This approach leads to a simple
closed-form formula for the effective complex conductivity in
the plane orthogonal to the fibres (equation (43)), which, to the
authors’ knowledge, is new in the literature.

This formula has been validated by using finite-element
solutions as a benchmark and a complete agreement has been
obtained. A comparison with the well-known Pauly–Schwan
(PS) and Hanai–Asami–Koizumi (HAK) models of the
effective complex conductivity of cell suspensions is also
presented. Moreover, the number of relaxation processes
accounted for by the present theory is discussed, and
their relative importance is investigated. Eventually, a
parametric analysis is performed, emphasizing the influence
of microstructural parameters on the conductivity locus and
the membrane potential.

The homogenization problem solved herein is formally
analogous, e.g. to the electric or thermic conduction
problem of a periodic fibrous composite with interfacial
resistance, or to the antiplane shear problem of a periodic

fibrous composite with elastic constituents and Kelvin–Voigt
viscoelastic interfaces. Hence, the analytical formula derived
herein may also be used to compute the corresponding effective
electrical, thermal or mechanical properties.

The paper is organized as follows. In section 2 the
statement of the problem is given and the asymptotic
homogenization method is sketched. The main result is
presented in section 3, where the cell problem is analytically
solved, and the closed-form formula (43) for the effective
complex conductivity is provided. Section 4 is devoted to
validation, comparison, discussion and parametric analysis.
Results from the elliptic function theory used in section 3 are
collected in appendix A; a result from linear algebra used in
section 3.5 is recalled in appendix B.

2. Statement of the problem

A two-phase fibrous composite material composed of a
periodic hexagonal arrangement of identical circular cylinders
with radius R and electric conductivity σf embedded in a
matrix with electric conductivity σm is considered here. This
composite material may represent an idealized model of a
biological tissue comprising tubular cells, such as skeletal
muscle. Indeed, fibres and matrix model the intra- and extra-
cellular phases, respectively, whose dielectric properties are
negligible in the radio-frequency range [6]. Cells are coated by
plasma membranes, which are dielectric lipid bilayers. Their
thickness t is of the order of ten nanometres, much smaller than
the spatial period L of the microstructure, which is of the order
of tens of micrometres. Consequently, plasma membranes can
be preferably modelled as two-dimensional interfaces between
the intra- and extra-cellular phases, with conductance G and
capacitance C per unit area, respectively given by the electric
conductivity σb and permittivity εb of the bilayer, divided by its
thickness [39]. Hence, the interface admittance per unit area
is Y = G + iωC in the Fourier domain, where ω is the circular
frequency. This finite interface admittance causes the electric
potential to jump across the interfaces, so that they are usually
referred to as imperfect.

In clinical applications, electric current is applied to body
segments having sizes of centimetres to tens of centimetres,
and its wavelength is of the same order in the radio-frequency
range [2]. This suggests that the electric conduction problem
can be studied by homogenization, in this frequency range [40].
To this end, a family of problems is introduced, indexed by a
parameter ε scaling the microstructure (figure 1(a)). The value
ε = 1 refers to the real composite material under consideration,
whereas the homogenization limit is obtained by letting the
parameter ε go to zero.

The problem of determining the electric potential uε in the
composite with ε-scaled microstructure can be mathematically
stated as follows [39, 41]:

−div(σ∇uε) = 0, in �ε
f ∪ �ε

m, (1)

[[σ∇uε · ν]] = 0, on 	ε, (2)

Y

ε
[[uε]] = σ∇uε · ν, on 	ε, (3)
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Figure 1. (a) Geometrical setting of the problem at the macroscale:
cross section of the fibrous composite (the fibre size is exaggerated
with respect to the sample size, for illustrative purposes).
(b) Geometrical setting of the cell (or local) problem at the
microscale.

where �ε
f and �ε

m denote fibres and matrix, respectively; 	ε is
the ensemble of interfaces (figure 1(a)); div and ∇ are the
divergence and gradient operators, respectively; a dot denotes
the scalar product; ν is the normal unit vector to 	ε pointing
into �ε

m; shadow brackets [[·]] denote the jump of the enclosed
quantity across the interface; finally, σ = σf in �ε

f , σ = σm in
�ε

m. The quantities L, G, C, σf and σm are positive constants.
Equation (1) governs the Ohmic conduction in fibres

and matrix; equation (2) accounts for the continuity of the
current flux density across interfaces; equation (3) describes
their electric capacitive/conductive behaviour. The quasi-static
approximation of the Maxwell equations holds [2].

2.1. The homogenized equation

The asymptotic homogenization method [24, 25] is employed
to find the overall complex conductivity of the tissue. It is
only sketched here for the sake of completeness, since it is
a standard technique. As shown in figure 1(a), two different
scales characterize the problem. Hence, two different space
variables are introduced: the macroscopic one, x, and the
microscopic one, y = x/ε, y ∈ Q, Q being the unit cell.
Accordingly, it turns out that [25]

div = 1

ε
divy + divx, ∇ = 1

ε
∇y + ∇x. (4)

A formal asymptotic expansion is looked for in the form:

uε(x, y) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · , (5)

where u0, u1 and u2 are Q-periodic in y, and u1, u2 have null
integral average over Q. Substituting (5) into problem (1)–(3)
and equating the power-like terms of ε, three differential
problems for u0, u1 and u2 are obtained. Considering the
terms of order ε−2, it turns out that

−σ
yu0 = 0, in Qf ∪ Qm, (6)

[[σ∇yu0 · ν]] = 0, on 	, (7)

Y [[u0]] = σ∇yu0 · ν, on 	, (8)

where Qf and Qm denote the regions of Q, respectively
occupied by fibre and matrix, and 	 is their interface
(figure 1(b)). Problem (6)–(8) implies that u0 = u0(x) [41].

With this in mind, taking into consideration the terms of order
ε−1, it follows that

−σ
yu1 = 0, in Qf ∪ Qm, (9)

[[σ(∇yu1 + ∇xu0) · ν]] = 0, on 	, (10)

Y [[u1]] = σ(∇yu1 + ∇xu0) · ν, on 	. (11)

Finally, considering the terms of order ε0, the problem for u2

is obtained:

−σ

(

yu2 + 2

∂2u1

∂xj∂yj

+ 
xu0

)
= 0, in Qf ∪ Qm, (12)

[[σ(∇yu2 + ∇xu1) · ν]] = 0, on 	, (13)

Y [[u2]] = σ(∇yu2 + ∇xu1) · ν, on 	, (14)

where the summation convention is adopted. Integrating
(12) both in Qf and in Qm, using the Gauss–Green lemma,
adding the two contributions and exploiting (13), the following
equation is obtained:

σ
xu0 = 1

|Q|
∫

	

[[σ∇xu1 · ν]] d�, (15)

in which σ = (σf |Qf | + σm|Qm|)/|Q|, d� is the line element
of 	 and | · | denotes the Lebesgue measure. The unknown
function u1 is represented in the form [24, 25]:

u1(x, y) = −χ(y) · ∇u0(x), (16)

where the complex-valued cell function χ(y) has been
introduced. Its components χh, h = 1, 2, are the unique null
average Q-periodic solutions of the cell problem:

−σ
yχh = 0, in Qf ∪ Qm, (17)

[[σ(∇yχh − eh) · ν]] = 0, on 	, (18)

Y [[χh]] = σ(∇yχh − eh) · ν, on 	, (19)

where eh is the unit vector parallel to the yh axis, and can
be regarded as a unit macroscopic electric field applied to the
body. Hence, −∇yχh is the corresponding perturbation field
generated by interfacial polarization due to the microstructure.

Substituting (16) into (15), the homogenized equation for
u0 is finally derived:

− div(σ #∇xu0) = 0. (20)

Here σ # is the homogenized admittance matrix, whose
coefficients (σ #)h,j , h, j = 1, 2, are given by

(σ #)h,j = σδh,j +
1

|Q|
∫

	

[[σχj ]]νh d�, (21)

where δ is the Krönecker symbol. Equation (21) yields the
effective complex conductivity of the composite material in
terms of the solution of the cell problem.

3. The cell problem

In this section a series solution to the cell problem (17)–(19)
is obtained, and an analytical expression for the effective
complex conductivity is derived.
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3.1. Power series representation

The microstructure considered in this work (figure 1(b)) is
invariant with respect to rotation of π/3 radians about the
origin O. Hence, it can be proved that the unknowns χh, h = 1,
2, satisfy the following relation, for every (y1, y2) ∈ Q:

1

2
χ1(y1, y2) +

√
3

2
χ2(y1, y2)

= χ1

(
1

2
y1 +

√
3

2
y2, −

√
3

2
y1 +

1

2
y2

)
. (22)

As a consequence, only the cell function χ1 needs to be
determined. For the sake of simplicity, it is denoted by χ in
the following. Moreover, the microstructure is invariant with
respect to reflections about the y1 and y2 axes, so that χ turns
out to be an odd (respectively, even) function with respect to
y1 (respectively, y2). In particular, these properties, together
with (22) and (21), imply that σ # is a scalar matrix, and thus
the homogenized material exhibits isotropic overall conductive
behaviour in the plane orthogonal to the fibres.

Exploiting field equation (17) and the cited evenness
and oddness properties, the unknown potential χ can be
represented as follows:

• in the fibre (Qf ):

χ(r, θ)|Qf := χf(r, θ) =
+∞∑
k=1

o ak

( r

R

)k

cos kθ ; (23)

• in the matrix (Qm):

χ(r, θ)|Qm := χm(r, θ)

=
+∞∑
k=1

o

[
bk

( r

R

)k

+ b−k

( r

R

)−k
]

cos kθ, (24)

where (r, θ) are polar coordinates centred at the origin O,
and the sums affected by the apex o are carried out over odd
indices only. As usual, only positive powers of r are taken
in (23) due to regularity requirements, since Qf contains the
origin. The quantities ak , bk , b−k , k = 1, . . . , +∞, odd k,
are complex constants which will be determined by exploiting
both the interface boundary conditions (18) and (19) on 	, and
the periodicity requirement on ∂Q.

3.2. Interface boundary conditions

Substituting (23) and (24) into (18) and (19) yields, for odd
natural k:

σm(kR−1bk − kR−1b−k − δk1) = σf(kR−1ak − δk1), (25)

Y (bk + b−k − ak) = σf(kR−1ak − δk1). (26)

These equations allow one to express ak and bk as linear
functions of b−k , k = 1, . . . , +∞, odd k, as follows:

ak = λkb−k + Rδk1, (27)

bk = γkb−k + Rδk1, (28)

where

γk = (α + k)/(β + k), λk = 2RYσ−1
f /(β + k),

α = RY(σ−1
f + σ−1

m ), β = RY(σ−1
f − σ−1

m ). (29)

3.3. Periodic boundary conditions

The periodicity requirement on ∂Q is enforced by resorting
to the theory of elliptic functions [26–28]. In particular, the
function χm is represented as follows [29]:

χm(y1, y2) = −w1�
(

η1

ω1
z

)
+

+∞∑
s=1

o ws�
(

ζ (s−1)(z)

(s − 1)!

)
,

(30)

where
z = (y1 + iy2)/L (31)

is the complex variable; i = √−1 is the imaginary unit;
�(·) denotes the real part; ζ(z), ζ (s)(z) are the quasi-periodic
Weierstrass Zeta function of semiperiods ω1 = 1/2 and ω2 =
exp(iπ/3)/2 and its sth derivative, respectively; η1 = ζ(ω1) =
π/

√
3; and the quantities ws , s = 1, . . . , +∞, odd s, are

complex constants to be determined. Only odd indices are
taken in (30), in order to fulfil the evenness and oddness
properties of χm(y1, y2) recalled above.

Equation (30) indeed implements the periodic boundary
conditions on ∂Q, since, exploiting (A.2), (A.3) and
remembering that the derivatives of ζ are elliptic functions,
from (30) it follows that

χm(y1 + L, y2) = χm(y1, y2) = χm

(
y1 +

1

2
L, y2 +

√
3

2
L

)
,

(y1, y2) ∈ Q. (32)

3.4. Solution of the cell problem

The two representations of the function χm given in (24)
and (30) must coincide. This condition is enforced by recasting
the latter representation as a Laurent series, using (A.8).
Recalling that the constants µk,s entering (A.8) and defined
in (A.9) are real quantities, after some algebra it turns out that

χm(y1, y2) = − η1

ω1
w1�(z)

+
+∞∑
k=1

o

[
wk�(z−k) −

(
+∞∑
s=1

o µk,sws

)
�(zk)

]
. (33)

Comparing (24) and (33), and recalling (31), the following
equations are obtained, for every odd natural number k:

ρ−kbk = − η1

ω1
δk1w1 −

+∞∑
s=1

o µk,sws, (34)

ρkb−k = wk, (35)

where the dimensionless fibre radius was introduced:

ρ = R

L
. (36)

Substituting bk and b−k from (34) and (35) into (28), the
following infinite system of linear equations for the unknowns
wk , k = 1, . . . , +∞, odd k, is obtained:

ρ−kγkwk + ρk

+∞∑
s=1

o µk,sws +
ρη1

ω1
δk1w1 = −Rδk1. (37)

4
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It is convenient [32] to rewrite the above system in terms of
another set of variables yk , k = 1, . . . , +∞, odd k:

yk =
√

k

ρk
wk. (38)

After some algebra, the following equation is derived:(
I +

η1ρ
2

γ1ω1
u ⊗ u + WΓ−1

)
Γy = −Ru, (39)

where the unknowns yk have been arranged into a vector y, the
vector u has the only nonzero element u1 = 1, I is the identity
matrix, ⊗ denotes the tensor product, Γ is a diagonal complex
matrix having diagonal entries γk , Γ−1 is its inverse and the
generic element Wk,s of the real matrix W is µk,sρ

k+s
√

k/s,
for odd natural numbers k, s. It can be shown that W is a
symmetric matrix.

Equation (39) yields the unknowns yk , for odd natural k,
which in turn give the unknowns wk , b−k , bk and ak ,
respectively by (38), (35), (28) and (27). The latter quantities
determine the cell function χ .

3.5. Effective complex conductivity

The effective complex conductivity is then computed by
substituting the representations (23) and (24) of the cell
function into (21). After some algebra, the following
expression is obtained:

σ # = σ + [σm(b1 + b−1) − σfa1]πR/|Q| = σm[1 + 2py1/R],

(40)

where

p = 2πρ2

√
3

= η1ρ
2

ω1
(41)

is the fibre volume fraction. The matrix appearing in (21) has
here been identified with the scalar σ #, since the homogenized
material is isotropic in the plane orthogonal to the fibres.

It remains to estimate the quantity y1 entering the above
equation. To this end, it is necessary to truncate the infinite
system (39) to a finite order N . Then, a numerical solution can
be easily obtained, e.g. via a standard LU-decomposition.

Here a closed-form analytic solution is obtained.
By applying Cramer’s rule, from (39) it follows that

σ #

σm
= 1 − 2p

γ1

(−γ1y1

R

)
=

det

[
I − p

γ1
u ⊗ u + WΓ−1

]
N

det

[
I +

p

γ1
u ⊗ u + WΓ−1

]
N

,

(42)

where det denotes the determinant and suffix N denotes the
truncation to the order N . Then, recalling the definitions of W,
Γ, u, and using a result from linear algebra reported in (B.2),
the following closed-form formula is obtained:

σ #

σm
=

γ −
1

∑N
n=0

∑
I∈N Cn

(det MI,I )

(
ω1

η1
p

)|I | ∏
k∈I (γ

−
k )−1

γ +
1

∑N
n=0

∑
I∈N Cn

(det MI,I )

(
ω1

η1
p

)|I | ∏
k∈I (γ

+
k )−1

.

(43)

Here γ ±
k = γk , odd k, with the exception of γ ±

1 = γ1 ± p,
where the dimensionless parameters γk are defined in (29);
NCn is the set of the combinations of the N odd indices
{1, 3, . . . , 2N − 1} taken n at a time; M is the matrix with
elementsµk,s defined in (A.9), for odd k, s; MI,I is the principal
minor of M corresponding to the rows and the columns with
index in the subset I ; finally, |I | is the sum of the elements
of I . The convention that det MI,I = 1 and

∏
k∈I (γ

±
k )−1 = 1,

if I is the empty set, is adopted. For the periodic hexagonal
arrangement of circular cylinders considered herein, it results
that ω1/η1 = √

3/(2π).
Equation (43) has been derived under the hypothesis that

σf and σm are real quantities, amounting to neglecting the
permittivities of fibres and matrix. Nonetheless, (43) holds also
when the latter hypothesis is not fulfilled, by replacing the real
conductivities σf and σm with their complex counterparts [6]
in the expression (29) of the constants γk .

Besides its theoretical interest, (43) supplies a hierarchy
of simple explicit formulae, yielding better and better
approximations of the effective complex conductivity, for
larger and larger values of the truncation order N . As an
example, taking N = 1 in (43) and recalling that µ1,1 = 0, the
following Maxwell–Garnett-type estimate for σ # is obtained:

σ #

σm
= γ −

1

γ +
1

= 1 − 2p

γ1

[
1 +

p

γ1

]−1

. (44)

The same expression as above is obtained by taking N = 2.
Then, taking N = 3 it turns out that

σ #

σm
= 1 − 2p

γ1

[
1 +

p

γ1
− f1,5p

6

γ1γ5

]−1

, (45)

where f1,5 = (ω1/η1)
6µ1,5µ5,1 ≈ 7.542 217 32 × 10−2.

Moreover, taking N = 4 it follows that

σ #

σm
= 1 − 2p

γ1


1 +

p

γ1
−

f1,5p
6

γ1γ5

1 − f5,7p
12

γ5γ7




−1

, (46)

where f5,7 = (ω1/η1)
12µ5,7µ7,5 ≈ 1.060 283 33. The same

expression as above is obtained by taking N = 5. Finally,
taking N = 6 it follows that

σ #

σm
= 1 − 2p

γ1

×


1 +

p

γ1
−

f1,5p
6

γ1γ5
+

f1,11p
12

γ1γ11
− f1,5,7,11p

24

γ1γ5γ7γ11

1 − f5,7p
12

γ5γ7
− f7,11p

18

γ7γ11




−1

,

(47)

where f1,11 = (ω1/η1)
12µ1,11µ11,1 ≈ 7.649 951 87 ×

10−5, f7,11 = (ω1/η1)
18µ7,11µ11,7 ≈ 7.321 003 87 ×

10−1, and f1,5,7,11 = (ω1/η1)
24(µ1,5µ5,1µ7,11µ11,7 +

µ1,11µ11,1µ5,7µ7,5 −µ1,11µ11,7µ7,5µ5,1 −µ1,5µ5,7µ7,11µ11,1)

≈ 5.106 513 36 × 10−2.
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Formulae analogous to (44)–(46) were derived in [31, 42],
respectively in the cases of two-phase or three-phase
composites with perfect interfaces, and an approximation of
(47) up to the twelfth-order in p was derived in [43]. An
equation analogous to (46) was obtained in [35] for square
arrays of cylinders with interfacial contact resistance. To the
authors’ knowledge, the general formula (43) is presented here
for the first time.

3.6. Distribution of relaxation times

The circular frequency ω enters (43) through the complex
constants γk . A different expression for σ # is derived here,
aimed at emphasizing the dependence of σ # on ω.

To this end, the Fourier coefficients jk := bk + b−k − ak

of the jump [[χ ]] of χ across 	 are introduced and arranged
into a vector j; analogously, the Fourier coefficients of the flux
across 	, reported on either side of (25), are arranged into a
vector f. Using (25), (34) and (35), the following equation is
obtained:

f = (σ−1
f + σ−1

m )−1(L j/R + 2v), (48)

where L is a positive self-adjoint operator and v is a vector,
respectively defined by:

L = N
1
2 (I + κW)−1(I + W)N

1
2 ,

v = N
1
2 (I + κW)−1N− 1

2 u. (49)

Here κ = (σm −σf)/(σm +σf), N is a diagonal matrix having as
diagonal elements the odd integer numbers k = 1, 3, . . . , +∞,
and W = W + (η1ρ

2/ω1)u ⊗ u. It is pointed out that, under
the assumption that σf and σm are real quantities, (48) does not
involve ω. The latter enters (26), which, combined with (48),
leads to

(αI + L) j = −2Rv, (50)

whence j can be obtained. Then, the effective complex
conductivity results from (40), after computing y by

y = 1

2
N− 1

2 [(N − κL) j − 2κRv], (51)

which follows from (38), (25), (34) and (35).
From a computational point of view, this approach

is not as suitable as the one presented in section 3.5.
However, it enables a suggestive spectral solution. Indeed,
denoting by {g(1), g(2), . . . , g(n), . . .} an orthonormal basis
of eigenvectors of L, and by {λ1, λ2, . . . , λn, . . .} the
corresponding eigenvalues, from (50) it turns out that

j · g(n) = −2R
g(n) · v

α + λn

. (52)

This solution, after substituting into (51) and (40), yields

σ # = σ∞ −
+∞∑
n=1


σn

1 + iωτn

, (53)

where

σ∞
σm

= 1 − 2p

+∞∑
n=1

(g(n) · v)κg
(n)
1 ,


σn

σm
= 2p(1 − κλn)(g(n) · v)g

(n)
1

λn + RG(σ−1
f + σ−1

m )
,

τn = RC(σ−1
f + σ−1

m )

λn + RG(σ−1
f + σ−1

m )
. (54)

Equation (53) shows that the present theory accounts for
countably many relaxation processes, with relaxation times
τn and conductivity increments 
σn, n = 1, 2, . . . , +∞.
The high-frequency effective conductivity is σ∞; the low-
frequency one is

σs = σ∞ −
+∞∑
n=1


σn, (55)

and the relative importance of each relaxation process is given
by
σn/(σ∞−σs). These countably many relaxation processes
are due to electric interactions between fibres, rigorously taken
into account here in the framework of a periodic hexagonal
arrangement of circular cylinders with interfacial impedance.

4. Validation, results and discussion

In this section, the effectiveness of the present analytical
method is proved by convergence analysis and comparison
with finite-element solutions and existing models. The
distribution of relaxation times is also discussed. Eventually,
a parametric analysis is presented.

4.1. Physical and dimensionless parameters

Computations are performed with reference to a periodic
hexagonal arrangement of cylinders with interfacial impe-
dance, having the following geometrical and material
properties:

• characteristic microstructural dimension L = 50 µm;
• fibre and matrix conductivities: σf = 0.5 S m−1 and

σm = 2 S m−1, respectively;
• interface capacitance C = 10−2 F m−2;
• interface conductance G = 5 S m−2.

For sufficiently high volume fractions (i.e. p = 0.9) this
composite can be regarded as a model of skeletal muscle [44].
Also lower values of p are considered in the following, for the
sake of comparison.

It turns out that Y ≈ iωC, since G 	 Cω in the
radio-frequency range [6]. The characteristic frequency
ωc is the frequency at which the imaginary part 
(σ #) of
the effective complex conductivity σ # attains its maximum
value; the corresponding value of σ # is denoted by σ #

c .
For convenience, the following dimensionless quantities are
introduced:

• conductivity contrast (or ratio) ξ = σf/σm;
• dimensionless (circular) frequency � = ωCL/σm

(the dimensionless counterpart of ωc is denoted by �c);
• dimensionless effective complex conductivity σ #/σm.

6
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Table 1. Present theoretical solution. Minimum order N required to give the effective complex conductivity at characteristic frequency (σ #
c ),

to the relative accuracy of 10−2 (on the left) or 10−4 (on the right). N is listed for various values of the volume fraction p and of the
conductivity contrast ξ .

Relative accuracy = 10−2 Relative accuracy = 10−4

ξ ξ

p 0 10−1 0.25 10 +∞ 0 10−1 0.25 10 +∞
0.30 1 1 1 1 1 1 1 1 1 1
0.60 1 1 1 1 1 3 3 3 3 3
0.70 3 3 3 1 1 4 4 4 4 4
0.80 3 3 3 3 3 7 6 6 4 4
0.85 4 4 3 3 3 9 7 7 7 7
0.87 6 4 4 3 3 10 10 9 7 7
0.88 7 4 4 4 4 13 12 10 9 9
0.89 9 6 4 4 4 16 13 13 10 10
0.90 13 9 7 4 4 27 21 18 13 13

Table 2. Present theoretical solution. Dimensionless characteristic frequency (�c) and corresponding dimensionless effective complex
conductivity (σ #

c /σm) as functions of the solution order N . For N = 1, 2, . . . , 6, equations (44)–(47), special cases of the general
equation (43), were employed. Volume fractions p = 0.30, 0.60, 0.90. Conductivity contrast ξ = 0.25.

p = 0.30 p = 0.60 p = 0.90

N �c
�(σ #

c )

σm


(σ #
c )

σm

�c
�(σ #

c )

σm


(σ #
c )

σm

�c
�(σ #

c )

σm


(σ #
c )

σm

1, 2 (44) 0.7662 0.6167 0.0782 0.5786 0.3603 0.1103 0.4954 0.1757 0.1230
3 (45) 0.7662 0.6167 0.0782 0.5784 0.3592 0.1108 0.4951 0.1613 0.1290
4, 5 (46) 0.7662 0.6167 0.0782 0.5784 0.3592 0.1108 0.4956 0.1563 0.1328
6 (47) 0.7662 0.6167 0.0782 0.5784 0.3592 0.1108 0.4955 0.1553 0.1338
10 0.7662 0.6167 0.0782 0.5784 0.3592 0.1108 0.4949 0.1539 0.1354
15 0.7662 0.6167 0.0782 0.5784 0.3592 0.1108 0.4947 0.1538 0.1356
20 0.7662 0.6167 0.0782 0.5784 0.3592 0.1108 0.4946 0.1537 0.1356
25 0.7662 0.6167 0.0782 0.5784 0.3592 0.1108 0.4946 0.1537 0.1357

4.2. Convergence

As noted in section 3.5, it is necessary to truncate the infinite
system (39) to a finite order N , amounting to taking into
account a finite number N of coefficients in the representations
(23) and (24) of the unknown electric potential.

Table 1 shows the minimum value of N required if the
effective complex conductivity at characteristic frequency (σ #

c )
is to have a relative accuracy of 10−2 (on the left) or 10−4

(on the right). This value increases with volume fraction p

and decreases with conductivity contrast ξ . In particular,
the well-known difficulty of convergence encountered at high
volume fractions of highly conductive cylinders relative to
the surrounding medium [37] is mitigated by the presence of
imperfect interfaces.

Table 2 shows the dimensionless characteristic frequency
�c and the corresponding dimensionless effective complex
conductivity σ #

c /σm, as functions of the order N of the solution.
The reported values were obtained for contrast ξ = 0.25 and
volume fractions p = 0.30, 0.60, 0.90. The convergence was
very fast and just a few coefficients turned out to be sufficient in
order to achieve good approximations. In particular, a relative
error smaller than 2.1% (respectively, 1.4%) was obtained,
even for p = 0.90, when the simple, closed-form expression
(46) (respectively, (47)) was employed.

4.3. Comparison with FEM

Finite-element solutions of the cell problem (17)–(19) are
presented here, for the sake of comparison. They were obtained
by using the commercial code COMSOL 3.4 [45], which
allows one to prescribe periodic boundary conditions on ∂Q,
and to specify the model equations (17)–(19) using a weak
formulation [46], especially suitable in order to account for
the imperfect-interface condition (19).

Different meshes were considered. As an example, the
one depicted in figure 2 is characterized by the mesh parameter
h/L = 0.05, where h is the maximum element size. A number
of layers of elements from 1 (h/L = 0.1) to 8 (h/L = 0.0125)
were created in the narrow regions between the fibre Qf and the
periodic outer boundary ∂Q, by suitably setting the COMSOL
mesh-generation parameters [45]. Coarser (respectively, finer)
meshes were obtained by taking h/L = 0.1 (respectively,
h/L = 0.025, 0.0125). Quadratic Lagrange triangular finite
elements [46] were employed.

Table 3 shows the convergence of the finite-element
solutions. The dimensionless characteristic frequency �c

and the corresponding dimensionless effective complex
conductivity σ #

c /σm are reported, as functions of the mesh
parameter h/L. The simulations were carried out for
contrast ξ = 0.25 and volume fractions p = 0.30,
0.60, 0.90. The adopted quadratic elements showed very good
convergence properties. After the convergence is reached,

7
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a complete agreement with the analytical method presented
herein (last line of table 2) is obtained. The latter, however, is
computationally much less demanding.

4.4. Comparison with existing models

In this section the present theory is compared with existing
models of the effective complex conductivity of cell
suspensions. Herein the well-known PS [21] or HAK [22]
models are considered. As a matter of fact, they are suitably
modified in order to cover the present case of coated cylindrical
inclusions.

In the spirit of [21,22], the effective complex conductivity
of a coated cylinder is given by

σ ∗
cc = σ ∗

b

(1 − v)σ ∗
b + (1 + v)σf

(1 + v)σ ∗
b + (1 − v)σf

, (56)

where σ ∗
b = iωεb is the complex conductivity of

the lipid bilayer, mainly exhibiting dielectric behaviour,
v = (1 − t/R)2, and t is the coating thickness. Since t is
three orders of magnitude smaller than the cylinder radius R, a
simpler expression can be derived from (56) by introducing
the interface admittance per unit area defined in section 2,
Y = iωεb/t , and neglecting higher-order terms in t . Hence,
the following expression is obtained [47]:

σ ∗
cc = σf

1 + σf/(RY )
. (57)

Figure 2. Example of finite-element mesh used in the computations:
volume fraction p = 0.90; mesh parameter h/L = 0.05; element
growth rate: 1.2; resolution of narrow regions: 2 [45]. (a) Fibre Qf ,
with boundary 	. (b) Matrix Qm, with inner boundary 	 and
periodic outer boundary ∂Q.

Table 3. Finite-element solutions. Dimensionless characteristic frequency (�c) and corresponding dimensionless effective complex
conductivity (σ #

c /σm), as functions of the mesh parameter h/L. Quadratic Lagrange triangular finite elements. Volume fractions p = 0.30,
0.60, 0.90. Conductivity contrast ξ = 0.25.

p = 0.30 p = 0.60 p = 0.90

h

L
�c

�(σ #
c )

σm


(σ #
c )

σm
�c

�(σ #
c )

σm


(σ #
c )

σm
�c

�(σ #
c )

σm


(σ #
c )

σm

0.1 0.7613 0.6152 0.0789 0.5784 0.3592 0.1108 0.4948 0.1538 0.1354
0.05 0.7626 0.6156 0.0787 0.5784 0.3592 0.1108 0.4947 0.1537 0.1356
0.025 0.7662 0.6167 0.0782 0.5784 0.3592 0.1108 0.4946 0.1537 0.1357
0.0125 0.7662 0.6167 0.0782 0.5784 0.3592 0.1108 0.4946 0.1537 0.1357

Equation (57) is then substituted into the Maxwell–Garnett
equation, leading to a PS-type model [47]:

σ # = σm
(1 − p)σm + (1 + p)σ ∗

cc

(1 + p)σm + (1 − p)σ ∗
cc

, (58)

or into an analogue of Hanai’s equation, suitably modified in
order to take into account the cylindrical shape of cells, leading
to a HAK-type model:

σ # − σ ∗
cc

σm − σ ∗
cc

(σm

σ #

)1/2
= 1 − p. (59)

It turns out that (58) coincides with (44): indeed, the PS-type
model is known to yield a first-order approximation of the
effective complex conductivity.

Table 4 shows the dimensionless characteristic frequency
�c and the corresponding dimensionless effective complex
conductivity σ #

c /σm, as computed according to the three
models under comparison. The reported values were obtained
for contrasts ξ = 0, 0.25, +∞, and volume fractions p = 0.30,
0.60, 0.90. In the case ξ = 0 (i.e. nonconductive inclusions),
the interface properties have no influence on the effective
conductivity of the composite, which behaves like a purely
conductive perforated domain.

The present results are close to the PS-type results at low
volume fractions, where the latter are deemed to be satisfactory,
and to the HAK-type results at high volume fractions, where
the HAK theory is believed to behave better than the PS theory.
The latter issue is further stressed in figure 3, relevant to
volume fraction p = 0.9 and contrast ξ = 0.25. In particular,
figures 3(a) and (b), respectively plot the real and imaginary
parts of the dimensionless effective complex conductivity as
functions of the dimensionless frequency �; figure 3(c) plots
the dimensionless effective real permittivity 
(σ #)/(σm�),
also given by 
(σ #)/(ωCL), as a function of �. Finally,
the conductivity locus is depicted in figure 3(d), where a
remarkable agreement between the present theory and HAK
model appears. An asset of the former is its ability to supply
approximations of the effective conductivity in the form of
rational expressions.

Figures 3(a)–(c) are also aimed at ascertaining the validity
of neglecting the permittivities of fibres and matrix, by
comparing the corresponding results (solid lines) to the ones
obtained by replacing the real conductivities σf and σm,
respectively with the complex conductivities σf + iωεrε0 and
σm + iωεrε0 (dotted lines), where εr ≈ 80 [6] and ε0 is

8
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Table 4. Comparison among PS-type, HAK-type and present models. Dimensionless characteristic frequency (�c) and corresponding
dimensionless effective complex conductivity (σ #

c /σm). Volume fractions p = 0.30, 0.60, 0.90. Conductivity contrasts ξ = 0, 0.25, +∞.

p = 0.30 p = 0.60 p = 0.90

Model �c
�(σ #

c )

σm


(σ #
c )

σm
�c

�(σ #
c )

σm


(σ #
c )

σm
�c

�(σ #
c )

σm


(σ #
c )

σm

ξ = 0
PS-type – 0.5385 0. – 0.2500 0. – 0.0526 0.
HAK-type – 0.4900 0. – 0.1600 0. – 0.0100 0.
Present – 0.5384 0. – 0.2483 0. – 0.0178 0.

ξ = 0.25
PS-type 0.7662 0.6167 0.0782 0.5786 0.3603 0.1103 0.4954 0.1757 0.1230
HAK-type 0.6821 0.5876 0.0953 0.4972 0.3102 0.1380 0.4692 0.1561 0.1333
Present 0.7662 0.6167 0.0782 0.5784 0.3592 0.1108 0.4946 0.1537 0.1357

ξ = +∞
PS-type 6.4579 1.1978 0.6593 9.8356 2.1250 1.8750 38.145 9.5263 9.4737
HAK-type 9.1504 1.3273 0.6410 26.354 3.5033 2.5006 388.71 53.597 42.623
Present 6.4574 1.1978 0.6593 9.9333 2.1327 1.8660 305.17 32.192 21.945

10-2 10-1 100 101

10-2 10-1 100 101

10-2

10-1

100

10-2

10-1

100

10-2

10-1

100

Ω

ℜ
 (σ

# )
 / 

σ m

(a)
10-2 10-1 100 101

Ω(b)

ℑ
 (σ

# )
 / 

σ m

Ω

ℑ
 (σ

# )
 / 

(σ
m

Ω
)

(c)
0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

ℜ (σ#) / σm

ℑ
 (σ

# )
 / 

σ m

(d)

Figure 3. (a) Real part and (b) imaginary part of dimensionless effective complex conductivity versus dimensionless frequency.
(c) Dimensionless effective permittivity versus dimensionless frequency. (d) Imaginary versus real part of dimensionless effective
complex conductivity. The permittivities of fibres and matrix are neglected (solid lines) or taken into account (dotted lines). Volume
fraction p = 0.9; contrast ξ = 0.25. Present model: blue/circles; PS-type model: red/triangles up; HAK-type model: green/squares.

the permittivity of vacuum. It turns out that neglecting the
permittivities yields satisfactory results up to a dimensionless
frequency of the order of unity, corresponding to about 1 MHz
in physical units. Above that value, complex conductivities
should be considered; however, the present treatment would
remain unchanged.

4.5. Distribution of relaxation times

It is shown in section 3.6 that the present theory accounts for
countably many relaxation processes, arising even when σf

and σm are real quantities. Their significance is investigated
in this section. Table 5 gives the high- and low-frequency
dimensionless conductivities σ∞/σm and σs/σm, respectively,
the relative magnitudes 
σn/(σ∞ − σs) of the first three
most relevant relaxation processes, and the corresponding
dimensionless relaxation times τnσm/(CL), for volume
fractions p = 0.30, 0.60, 0.90 and conductivity contrast
ξ = 0.25. It can be observed that one relaxation process
is prevailing, accounting alone for over 97% of the total
conductivity increment from low to high frequencies, even
for p = 0.9.
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Table 5. Present theoretical solution. High- and low-frequency dimensionless conductivities σ∞/σm and σs/σm, respectively.
Dimensionless relaxation times τnσm/(CL) and corresponding relative conductivity increments 
σn/(σ∞ − σs) for n = 1, 2, 3.
Finally, fitted Cole–Cole parameters: α and τσm/(CL). Volume fractions p = 0.30, 0.60, 0.90. Conductivity contrast ξ = 0.25.

p
σ∞
σm

σs

σm


σ1

σ∞ − σs

τ1σm

CL


σ2

σ∞ − σs

τ2σm

CL


σ3

σ∞ − σs

τ3σm

CL
α

τσm

CL

0.30 0.6949 0.5384 1.0000 1.3052 1.6 × 10−5 0.2876 1.4 × 10−11 0.1307 7.2 × 10−5 1.3051
0.60 0.4701 0.2483 0.9989 1.7297 0.0011 0.4077 4.5 × 10−7 0.2904 4.2 × 10−4 1.7279
0.90 0.2911 0.0178 0.9764 2.0458 0.0221 0.8357 0.0015 0.3933 0.0048 2.0097
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Figure 4. (a) Imaginary versus real part of dimensionless effective complex conductivity for different volume fractions and contrasts.
Volume fraction p = 0.30: green - · -; p = 0.60: blue - - -; p = 0.90: red —. Contrast ξ = 0: crosses; ξ = 0.25: circles; ξ = 1: triangles up;
ξ = +∞: squares. (b) Dimensionless characteristic frequency versus volume fraction for different contrasts. Contrast ξ = 0.25:
blue/circles; ξ = 1: red/triangles up; ξ = +∞: green/triangles down.

This issue is further stressed by fitting Cole–Cole
depressed circles [8], given by

σ # = σ∞ +
σs − σ∞

1 + (iωτ)1−α
, (60)

to the theoretically computed conductivity loci. The fitted
values of the distribution parameter α, which is a measure
of the broadening of the dispersion, and of the dimensionless
characteristic relaxation time τ , are reported in the last two
columns of table 5.

The prevalence of one relaxation process, or else the small
value of α obtained by fit, implies that electric interactions
between fibres can only partially account, in the framework
of a periodic hexagonal arrangement of circular cylinders
with interfacial impedance, for the experimentally observed
broadening of the distribution of relaxation times in real
tissues [9]. A rigorous micromechanical model able to capture
the latter issue may require taking into account geometrical
features of real tissues, such as irregular cell shape or
distribution of cell size. This is beyond the scope of this work,
but the present approach could be extended to deal with those
situations.

4.6. Parametric analysis

A parametric analysis may be useful to assess the effect
of microstructural parameters on the effective complex
conductivity of the composite.

Figure 4(a) shows the dimensionless effective conduc-
tivity loci obtained for different values of volume fraction
(p = 0.30, 0.60, 0.90) and contrast (ξ = 0, 0.25, 1, +∞). As

discussed above, for ξ �= 0 the locus is approximately an arc
of circle in which frequency increases from left to right. The
imaginary part of σ #/σm, as resulting from interfacial polariz-
ation, vanishes at very low or very high frequencies, since
in those situations capacitive interfaces act as open or short
circuits, respectively. Moreover at very low frequencies, for
fixed volume fraction p, curves relevant to different contrasts
ξ originate from the same point on the real axis, corresponding
to the effective real conductivity of a perforated domain. In
particular, for ξ = 0 (i.e. nonconductive inclusions) the locus
collapses to that point, which moves left as the volume fraction
increases. For ξ = 1 (i.e. the same conductivity of fibres and
matrix) the effect of the volume fraction disappears at very high
frequencies, where interfaces become perfect and the compo-
site behaves like a homogeneous material with σ #/σm = 1.

The behaviour of the dimensionless characteristic
frequency �c as a function of the volume fraction is reported
in figure 4(b), for contrasts ξ = 0.25, 1, +∞. In particular,
for ξ = 0.25 or ξ = 1, �c is a decreasing function of p,
whereas for ξ = +∞ it attains a minimum at intermediate
volume fractions.

In figure 5(a), the dimensionless effective complex
conductivity is reported as a function of the volume fraction,
at very low, very high or characteristic frequency, for contrast
ξ = 0.25: as expected, it is purely real at extreme frequencies.

The curves in figures 4 and 5(a) show a sharp dependence
of the effective complex conductivity and the characteristic
frequency on the volume fraction and, hence, they may be
useful in estimating the latter quantity, an issue which has
clinical significance in situations implying changes in the body
water content (e.g. during dialysis [48]).
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Figure 5. (a) Dimensionless effective complex conductivity versus volume fraction for contrast ξ = 0.25 and different dimensionless
frequencies. Very low dimensionless frequency: green - · -; characteristic dimensionless frequency: red —; very high dimensionless
frequency: blue - - -. Real (respectively, imaginary) part: triangles up (respectively, down). (b) Maximum dimensionless membrane potential
versus dimensionless frequency for different volume fractions and contrasts. Volume fraction p = 0.30: green - · -; p = 0.60: blue - - -;
p = 0.90: red —. Contrast ξ = 0: diamonds; ξ = 0.25: circles; ξ = 1: triangles up; ξ = +∞: squares.

During impedance spectroscopy measurements, an
estimate of the electric potential induced across the lipid bilayer
by the radio-frequency current injection may be useful to assess
the risk of muscle excitement. The induced potential per
unit macroscopic electric field is given by Vb = [[χ ]]; its
dimensionless counterpart is Vb/L. The maximum value of
|Vb|/L as a function of the dimensionless frequency is depicted
in figure 5(b), for volume fractions p = 0.30, 0.60, 0.90,
and contrasts ξ = 0, 0.25, 1, +∞. In all cases the trend is
sigmoidal: the induced potential vanishes at high frequencies,
due to interfaces acting as a short circuit, and reaches a plateau
at low frequencies. In physical units, the latter, slightly
depending on the volume fraction, is of the order of one-half
the microstructural characteristic length times the macroscopic
electric field.

5. Conclusions

In this work, dielectric properties of a periodic fibrous compo-
site with interfacial impedance and hexagonal symmetry were
investigated. The asymptotic homogenization method was
used and an analytical solution to the local problem was found
by employing Weierstrass elliptic functions. This approach
led to a simple closed-form formula for the effective complex
conductivity of the composite. Finite-element solutions
were used as a benchmark for validation. A parametric
analysis pointed out the dependence of the effective complex
conductivity on the microstructure.

The composite material studied herein is an idealization
of a biological tissue comprising tubular cells, such as
skeletal muscle. The present results may help in understanding
dielectric properties of the latter, notwithstanding its extreme
structural complexity. As an example, the present model
was able to take rigorously into account electric interactions
between fibres in the framework of a periodic hexagonal
arrangement, and to ascertain their influence on the effective
complex conductivity of the composite in the radio-frequency
range.

Future research will consider different arrangements,
uneven distribution of fibre size, irregular fibre shape and 3D
geometries.
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Appendix A. Some results from the elliptic function
theory

The Weierstrass Zeta function of semiperiods ω1, ω2, is defined
by [26–28]

ζ(z) = 1

z
+

∑
m,n

′
(

1

z − �m,n

+
1

�m,n

+
z

�2
m,n

)
, (A.1)

where �m,n = 2mω1 + 2nω2, for m, n ∈ Z, and the apex over
the summation symbol means that the pair (m, n) = (0, 0) is
excluded. The function ζ(z) is analytic over the whole z-plane,
except at simple poles at all the points of the set �m,n; it is odd
and quasi-periodic, that is

ζ(z + 2ωk) = ζ(z) + 2ηk, (A.2)

with k = 1, 2 and ηk = ζ(ωk). Its derivatives are elliptic
functions. The following relationship links η1, η2 and the
semiperiods ω1, ω2:

η1ω2 − η2ω1 = 1

2
π i. (A.3)

The Laurent series expansion of ζ is

ζ(z) = 1

z
−

+∞∑
k=2

ck

z2k−1

2k − 1
, (A.4)

where c2 = g2/20, c3 = g3/28, and

ck = 3

(2k + 1)(k − 3)

k−2∑
m=2

cmck−m, k � 4. (A.5)
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For ease of notation, it is stipulated that c1 = 0. The quantities
g2 and g3, known as invariants, are given by the equations

g2 = 60
∑
m,n

′
(�m,n)

−4, g3 = 140
∑
m,n

′
(�m,n)

−6. (A.6)

An alternative expression for ck , k � 2 is given by

ck

2k − 1
=

∑
m,n

′
(�m,n)

−2k

= 2(2ω1)
−2k

[
ζR(2k) +

(2π i)2k

(2k − 1)!

+∞∑
n=1

σ2k−1(n)e2π inω2/ω1

]
,

(A.7)

where ζR(α) = ∑+∞
n=1 n−α is the Riemann Zeta function, and

σα(n) = ∑
l|n lα is the divisor function.

The Laurent series expansion of the (s − 1)th derivative
of ζ , s � 1, odd s, is given by

ζ s−1(z)

(s − 1)!
= z−s −

+∞∑
k=1

o µk,sz
k, (A.8)

where for odd natural numbers k, s,

µk,s = 1

k + s − 1

(
k + s − 1

s − 1

)
c k+s

2
, (A.9)

and round brackets denote the binomial coefficient.
In particular, it turns out that µ1,1 = 0. Moreover, if
ω2/ω1 = exp(iπ/3), then µk,s vanishes when 6 does not divide
k + s.

Appendix B. A result from linear algebra

For any square matrix A of order N , it is well known that

det(I + A) =
N∑

n=0

ιn(A) =
N∑

n=0

∑
I∈N Cn

det AI,I , (B.1)

where I is the identity matrix, det denotes the determinant,
ιn(A) is the nth invariant of A, NCn is the set of the combinations
of the indices {1, 2, . . . , N} taken n at a time and AI,I is the
principal minor of the matrix A corresponding to the rows
and the columns with index in the subset I . It is understood
that ι0(A) = 1, and det AI,I = 1 if I is the empty set.
Consequently, it turns out that

det(I + λu ⊗ u + A) =
N∑

n=0

∑
I∈N Cn

h(I ) det AI,I , (B.2)

where λ is a scalar, u is the unit vector with the only nonzero
element u1 = 1 and

h(I) =
{

1, if 1 ∈ I,

1 + λ, if 1 �∈ I.
(B.3)
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